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Abstract.
A review is given of the dynamics of meso-scale smospheric areulations. An analysis of the instabilities, oscillations and adjustment processes
which are possible in 3 rotating atmosphere in which the rotation rate docs not vary n space. yields several charactenstic time scales and length
scitles which can be used to define the meso-scale. Special attention is paid 1o showing the relation between the circulation associated with
convection, the circulation associated with sea breeze, the cireulation perpendicular o 2 fronl. and the radial circulation in a tropical cyclone. Other
important meso-scale weather phenomena which are discussed are gravity-inertin waves, shallow cumulus convection, downslope winds and
thunderstorms.
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1. General introduction

During the last 20 years there has been a large increase in the interest in meso-scale atmospheric
circulations. This has been stimulated mainly by improvements in measuring capabilities and by the
introduction of satellites and supercomputers. Meso-scale circulations are responsibte for weather events
such as sea breeze, thunderstorms, lec-waves, severe downslope windstorms, polar lows and tropical
cyclones. Only very slowly is the newly accumulated knowledge finding its way into textbooks on
dynamical meteorology. These textbooks [e.g., Dutton 1976, Holton 1979, Gill 1982, Panchev 1985,
Pedlosky 1987] are still devoted for the most part to very large-scale atmospheric circulations, such as
planetary Rossby waves, mid-latitude depressions, the jetstream and the gencral circulation of the
earth’s atmosphere. Probably this reflects the fact that modern theories concerning these phenomena
have reached the adult stage, while many theories on meso-scale phenomena are judged too shaky or
not instructive enough to be included in books aimed at introducing the serious student to the core of
meteorology. It appears that all this is changing very quickly, now that a significant part of the
meteorological community has turned to the study of meso-scale weather phenomena. Since 1983, four
conferences on meso-scale meteorology have been organized by the American Meteorological Society,
the last one being in June 1990. One can obtain a good impression of the increasing interest in the
subject by comparing the reports of the first conference [Emanue! 1984] and the third conference
[Barnes and LeMone 1988]. These conferences, in addition to the NATO workshop held near Toulouse
(France) in 1982 [Lilly and Gal-Chen 1983), and the Intensive Course on Meso-scale Meteorology given
in 1984 [see Ray 1986], have helped to bring together the somewhat provincially operating communities,
who have tended to concentrate on special topics such as severe local storms or tropical cyclones.

The first textbook devoted completely to meso-scale weather phenomena was the book by Atkinson
[1981], entitled *“Meso-scale Atmospheric Circulations™. In this book meso-scale circulations are
classificd into two main categorics, namely topographically induced circulations and free circulations.
An example of a topdgraphically induced circulation is the circulation associated with a sea breeze. An
example of a frec circulation is a convection cell. Similar classifications are adopted in more recent
books on meso-scale meteorology. For example, Ray [1986] distinguishes between externally generated
and internally generated circulations, while Pielke [1984] distinguishes between terrain-induced circula-
tions and synoptically induced circulations.

The latter distinction suggests that ultimately all circulations are forced in some way or another. In
this review we ask ourselves: *How does the atmosphere react to forcing, given certain constraints?”.
The constraints can incidentally also be conceived of as forcing.

The atmosphere reacts to forcing through instabilities and adjustment processes. Adjustment and
instability are of course intimately related. Nevertheless, the distinction makes sense because, although
a circulation resulting from a flow instability can also be conceived of as an adjustment process, the
reverse is not always true.

The chapters encompassing this review are concerned with the following topics: (a) a phenomeno-
logical introduction to meso-scale circulations, (b) a review of the equations, approximations and
models used to describe meso-scale circulations, (c) instabilities, (d) adjustment processes, and (e)
forcing-mechanisms. In the chapters on instabilities and on adjustment processes we will investigate the
way in which the rotating atmosphere reacts to forcing, given certain external constraints, such as the
boundary conditions and rotation rate. We will refrain from saying too much about the details of the
forcing in these chapters. This will be postponed until the last main chapter. In that chapter we will
discuss specific meso-scale weather phenomena as illustrations of instabilities and adjustment processes
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given certain forcing mechanisms. Examples of forcing mechanisms arc mountains, latent heat release
and large-scale wind-shear.

We will pay quite a lot of attention to the tropical cyclone, even though this conspicuous
phenomenon should, from a dynamical point of view, perhaps be characterized as a large-scale
circulation. However, hopefully it will become clear that much can be learnt {rom a study of the tropical
cyclone which can help us to understand the propertics of (other) meso-scale circulations.

We will also look in some detail at the Boussinesq approximation to the equations of motion and the
cquation of continuity. Because this approximation is invoked quitc frequently in theoretical or
numerical studies of meso-scale circulations, it is worthwhile to pay attention to its validity.

Meteorology is principally an application of physics. Therefore, any person with a solid knowledge of
physics, especially fluid dynamics and thermodynamics should be able to read and understand this
review. Nevertheless, [ think a basic knowledge of meteorology, especially dynamical meteorology (e.g.
the first nine chapters of the book by Holton [1979]), will be extremely helpful if not essential in order
to fully appreciate the subject matter. Above ail, 1 hope that colleagues and advanced students,
especially those who are doing or starting fundamental rescarch on individual meso-scale weather
phenomena, will benefit from reading this review. There may not be much in this review which is new to
colleagues as far as the individual subjects are concerned, but | hope that the ordering of the material
will offer some new perspectives to everybody. This review should possibly be read in conjunction with
the more descriptive and obscrvationally oricnted book by Atkinson [1981]. the book with satellitc
images by Scorer [1986] and the book with photographs of meso-scale weather phenomena by Scorer
and Verkaik [1989].

2. A phenomenological introduction to the meso-scale

In the Metcorology Source Book [Parker 1988], J.M. Fritsch defines meso-scale meteorology as “that
portion of meteorology comprising the knowledge of intermediate-scale atmospheric phenomena, that is,
in the size range of approximately 1200 miles (2-400 km) and with time-periods of typically, but not
always, less than 1 day”.

In this review we will be concerned with the following questions. What makes this range of time and
size-scales intermediate? Which dynamical processes are characteristic of the meso-scale?

The meso-scale has frequently been identified as coinciding with the so-called spectral gap in the
spectrum of atmospheric motions. Soon after spectral Fouricr analysis became popular in meteorology
results of spectral analysis of meteorological time series began to appear in the literature. The most
famous spectrum is shown in fig. 2.1. This spectrum, computed by van der Hoven [1957], is based on a
time series of wind measurements made at a fixed point at a height of 100 m. It shows that, on average,
there is relatively little energy in the meso-scale range (30 min to one day), compared to the energy in
the so-called synoptic scales (more than one day) and the turbulent range (around 1 min). Others, such
as Vinnichenko [1970] and Fiedler [1971] have obtained similar spectra. All these investigators found a
minimum in the variance spectrum in periods ranging from half an hour to several hours.

The spectral gap is not an expression of the fact that individual (meso-scale) phenomena contain little
encrgy and that they are therefore unimportant; rather it seems to be an indication that these
phcnomena are highly intermittent [e.g., Ishida 1990]). They occur only if certain conditions are
fulfilled. For example, a sea breeze circulation will occur only when the temperature difference between
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Fig. 2.1. Spectrum of the horizontal wind measured at Brookhaven National Laboratory it a height of 100 m [after Van der Hoven 1957).

the sea and the land is large enough, and even then, other conditions must be met. Thunderstorms,
hurricanes, lee-waves and meso-scale convection cells, all of which are examples of meso-scale
circulations, occur only in certain areas and in certain seasons. This is in contrast to small scale
turbulence in the boundary layer and large scale planetary Rossby waves, which are nearly always
present.

If we decide that meso-scale motions are motions large enough to be affected by the rotation of the
earth, but small enough rot to be affected by the curvature (or the sphericity) of the surface of the earth
(the so-called B-effect; according to Wipperman [1981], the B-effect can always be neglected for
motion-systems with length scales smaller than 2500 km), we can think of only three externally imposed
(by the geometry and boundary conditions} constants or parameters in a static atmosphere. These are
the depth, H (m) (if the upper and lower boundaries are imposed), the Coriolis parameter,
f(s7") (=2|02| sin ¢, where ¢ is the latitude and |£2| is the absolute value of the angular velocity of the
earth) and the acceleration due to gravity, g (ms °). It is better to replace the latter parameter by the
so-called Brunt-Viisila frequency, N (s"), which contains g, but also takes account of the vertical
density stratification, which, of course, also determines the vertical acceleration. Neglecting the
curvature of the surface of the earth implies that f is assumed constant. Side boundaries are usually not
imposed in the atmosphere. In addition, the large-scale background flow may provide us with certain
characteristic parameters; however, for the moment let us restrict our attention to the externally
imposed parameters.

It is possible to construct two time scales, 7, and 7, and two length scales, A, and A, on the basis of
the externally imposed parameters. These are

n=Uf, n=1/N, A, =H, \=HNIf. (2.1)

7, multiplied by 2, is usually called the inertial period and at mid-latitudes is equal to about
27 x 10" s (about 18h); 7,, multiplied by 24, is usually called the Brunt-Viisili period and in the
atmosphere its magnitude is usually about 27 X 107 s (about 10 min).

The value of H = A, may vary according to the location of temperature inversions, which act as a
ceiling on atmospheric circulations., One such ceiling is the tropopause at a height of about 10 km. The
other length scale, A,, is usually called the Rossby radius of deformation after Rossby [1937, 1938] and
takes on a value of about 10° m (1000 km). Instead of A, we can also define a A, as Hf/N ~ 10°> m. This is
the smallest length scale which can be constructed from the parameters given above. We will see,
however, that A, actually never appears when we analyse the equations governing the motion of the
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atmosphere. In the course of this review we shall in fact see that 7,, 75, A, and A, define the bounds of
what may be considered as meso-scale metcorological phenomena.

Parameters which may come into play when there is a large-scale background flow, are the flow
velocity, u,(x, y,z) (v, y and z are, respectively, the two horizontal coordinates and the vertical
coordinate), the vertical shear, du,/dz, and vertical component, ,, of the vorticity associated with this
flow. With the help of these two new parameters we can construct additional time and space scales.
But, except when w,, du,/dz and ¢, are exceptionally large, these scales invariably lic in between the
extremes defined by 7, 7,, A, and A,.

An example: sea breeze. Let us be a little more specific and produce some examples of typical
meso-scale phenomena. These examples show that it is difficult to give an unambiguous definition of the
time and space scales of a particular phenomenon, especially if the phenomenon is not stationary
relative to the carth.

Perhaps, the most well-known meso-scale phenomenon is the sca breeze circulation. We will see that
this phenomenon possesses most of the properties which are typical for a meso-scale weather system.
One characteristic is that it is driven by diabatic heat sources, in this case by the daytime heating of the
boundary layer. The time scale of this driving mechanism is of the order of 24 h, which is comparable to
the inertial time scale, 7,. Therefore, the rotation of the carth will affect the circulation. This property
may be viewed as a second characteristic of meso-scale circulation. Furthermore, the sea brecze can be
viewed as a “hydrostatically balanced™ system, i.c. in constructing a theory of this system we can assume
that the vertically oriented forces are always in balance. This implies that the sea breeze circulation owes
its existence to an imbalance between the forces in the horizontal direction. Of course, a theory based
on hydrostatic balance will not account for the detailed structure of the circulation near the so-called sea
breeze front [e.g., Kraus et al. 1990], but it will describe the gross features of the circulation quite well
(see section 5.2).

The characteristic properties of the meso-scale can be illustrated with a special case of three
consecutive sea breeze days (6-8 May 1976) in The Netherlands. On these days air temperatures over
land reached values over 30°C, while the adjacent North Sea surface temperature stayed below 10°C,
These contrasts led to a very strong sea breeze circulation, penetrating nearly 150 km inland on one of
these days. The geography of the coastal area in question is shown in fig. 2.2. Also shown in this figure
are the positions of ten measuring stations which were selected for this particular case study (the white
circles). The terrain is practically fiat west of station 260. There are a few hills no higher than 100 m near
station 275. The hourly temperature, measured at the standard height of 1.5 m, is shown in fig. 2.3. In
fig. 2.4 the [0 min mean wind speed and direction measured cach hour at a height of 10 m are shown for
the same period. It can be seen clearly that during the day the wind at the coastal stations blows from
dircctions between south and north through west and during the night it blows from the cast. The
turning of the sca breeze during the day is due principally to the influence of the earth’s rotation (i.e.
the Coriolis force) on the circulation. The easterly wind during the night is induced mainly by the
large-scale-scale pressure pattern. By “large scale” (also called “synoptic scale” by many
metcorologists) we mean horizontal scales larger than about 1000 km. This large-scale pressure pattern
is shown in fig. 2.5. At these scales the wind is approximately in geostrophic balance at all times, i.e. the
pressure-gradient force and the Coriolis force balance each other very closely. Indeed, geostrophic
balance is typical of, and could be used to define the large-scale or synoptic-scale flow [e.g., Charney
1948]. Because of the large area of high pressure to the north of The Netherlands, the large-scale flow is
casterly over The Netherlands. This flow functions as a background to the smaller-scale sea breeze
circulation.
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Fig. 2.2. Map of The Netherlands and its vicinity. The positions of the stations are shown by white circles (sca breeze case) and black circles
(thunderstorm case) {with thanks 10 Peter Duynkerke).
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Fig. 2.4. Wind vectors at a height of 10m as a function of time on 6, 7 and 8 May. 1976 at ten stations in The Netherlands and over the adjacent
North Sea {see fig. 2.2). A line dirccted towards the left indicates a wind from the east. The length of the line is proportional to the wind speed. The
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Fig. 2.5. Large-scale surface pressure distribution {in hPa) on May 7. 1976, 80 UT. The letters H and L indicate maxima and minitna, respectively.
The Jetter N indicates the location of The Netherlands.
L ]



Aarnout van Delden, The dynamics of meso-scale amaospheric circulations 259

Separating the meso-scale from the other scales. For this particular case, the surface pressure, the
temperature and the wind direction and speed (averaged over 10 min} are available each hour at the ten
stations shown in fig. 2.2. From these data it is possible to resolve motions with length scales of the
order of 20-50 km or larger and with time scales of the order of 2 h or longer. It is important to note
that the observation network determines the minimum scales of motion which can be seen. In this
context it should be pointed out that some investigators [e.g., Pielke 1984, Joint Centre for Mesoscale
Meteorology 1988] have defined the meso-scales as scales of motion too small to be properly defined by
the current synoptic observation network but larger than the small-scale circulations within, for
example, the boundary layer or cumulus clouds. Ligda [1951], who according to Atkinson [1981] [see
also Emanuel 1986a, Browning 1989] introduced the term ‘“‘meso-scale” into meteorology, coined a
similar definition. Although this is not a very satisfactory definition, it does indicate that relatively little
is known about the meso-scale (see Atkinson [1981] for a more detailed history of the first steps in the
definition of and research on meso-scale meteorology).

If our observation network is fine enough to resolve a meso-scale circulation, as in the sea breeze
case discussed presently, we can see whether a clear distinction can be made from the data between this
meso-scale circulation and the other scales of motion. In the following an attempt to do this will be
described.

Figure 2.6 shows a plot of the surface pressure as a function of time between 0 h UT, 6 May 1976 and
24h UT, 8 May 1976, at the two extreme stations (300 (sea) and 375 (inland)). Clearly, there is a slow
trend in the pressure, associated with the retreat of the high-pressure area towards the north and the
advance of a depression from the south. On top of this synoptic trend, which clearly has a time scale
longer than three days, there are ripples, associated with phenomena possessing shorter time scales.
Although there is little order in these ripples at first sight, one can easily notice, when comparing the
two curves, that the station at sea generally records relatively lower pressures during the night than the
station inland and vice versa during the day. These pressure variations are associated with the
meso-scale sea breeze circulation. Beside this, a periodicity of approximately 12 h can be discerned in

375 (tand)

300 (sea)

surface pressure (hPa)

1010 =

12 24 12 24 12 24
6 May 7 May 8 May
time (UT)

Fig. 2.6. Surface pressure as a function of time (in 1976) at an inland station (375) and a sca station (300) (see fig. 2.2). The dark solid lines along
the horizontal time axis indicate the daylight hours,
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Fig. 2.7. Sea level pressure averaged aver ten stations, shown by white circles in fig. 2.2, and the deviation from this mean value at two stations, one

at sea {300) and the other over land (375}, as a function of time {in 1976). The dark solid lines along the horizontal time axis indicate the daylight
hours.

the pressure records, especially at the sea station (300). This periodicity is associated with the
atmospheric tide [Chapman and Lindzen 1970, Volland 1988].

The synoptic trend and the tidal trend (both large scale) should be very similar at all stations,
irrespective of the position relative to the coast, whereas the variations associated with the meso-scale
circulation will depend on the geographical situation. Therefore, if we average the time series of the
pressure over all ten stations, we will effectively filter out the meso-scale trend and be left with the
large-scale trend (i.e. the synoptic plus tidal trend). The result of this procedure is shown in fig. 2.7 (the
thick line). Also shown in fig. 2.7 is the deviation from this mean at stations 300 and 375. Clearly, the
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Fig. 2.8. Scale definitions and differemt processes with characteristic time and horizontal scales [based on Orlanski 1975].
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dominant period left after subtracting the tidal and synoptic components is 24 h at both stations. As
expected, the two records are out of phase. During the day, the pressure is relatively low over land and
relatively high over sea, while the opposite in the case during the night. Apparently, the amphtude of
the pressure oscillation associated with the sea breeze is about 1hPa (1hPa=1mb= 10° N/m?).
During the past few decades several workers have classified weather systems according to their
horizontal dimensions, assigning Greek letters to the different classes. The most well-known classifica-
tion is that of Orlanski [1975] (see fig. 2.8), but Fujita's [1981] terminology is also widely used for
reference purposes. These classifications, however, do not say much about the dynamics of these
weather systems. The idea that atmospheric motion is composed of several discrete scales of motion,

Fig. 2.9. Two photographs of Western Europe made by a polar orbiting satellite on July 11, 1984 at (a) 7: 48 UT and (b} 14: 29 UT. Courtesy of the
University of Dundee, Scotland.
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which may interact with each other, pervades in the minds of meteorologists, but is not always fruitful,
and in many cases is probably deceptive. In the case discussed above this view is indeed fruitful. By a
simple averaging procedure, we were able to isolate the principal time-scales making up the motion in
this case.

Another example: a thunderstorm. As an example of a case in which it is difficult, if not impossible,
to do such a thing, consider the thunderstorm showers which passed over exactly the same area, shown
in fig. 2.2, on 11 July 1984. Figurc 2.9 displays two satellite pictures of the thunderstorms. It can be
seen that there are actually two thunderstorms travelling at about the same speed (~94 kmh™'

Fig. 2.9. {cont.)
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26 ms ') one after the other from southwest to northeast. The first thunderstorm is dissipating and is
already very weak at the time of the second photograph. The very high travelling speed is typical of
these systems, which are similar in horizontal (spatial) scale to the sea breeze circulation. The similarity
in scale is however not apparent from the measurements at a particular station, as can be seen in fig.
2.10, which shows the pressure as a function of time for four stations in The Netherlands. The
thunderstorms are manifest in the pressure records as humps with a certain amplitude and period as if
they were solitary waves. The second thunderstorm is the most marked. Zierikzee (325) in the
southwest (see fig. 2.2) records a pressure rise of 6 hPa in 35 minutes, followed by a pressure fall of
9 hPa in the next 45 min. De Bilt (260) records a pressure fall of about 5hPa is less than 3 min. From
these pressure records one would of course conclude not that the thunderstorm is short-lived, but rather
that it travels fast. In fact, the thunderstorms formed during the night over the Bay of Biscay and
intensified strongly over France (see section 6.4). They had existed for at least 12h when they were
crossing The Netherlands.

We will return to this case in section 6.4. Here it serves to illustrate that we must make a distinction
between so-called Eulerian and Lagrangian time scales [Emanuel 1986a). The Eulerian time scale of a
system is the time scale we measure at a fixed point in space, i.e. the length of the humps in the
pressure records in fig. 2.10. This gives a time scale of about one hour for the individual thunderstorms
on 11 July, 1984. The Lagrangian time scale, on the other hand, is the time it takes an air parcel to
move once through the entire system, or, if we are dealing with wavelike oscillations, to cover one
wavelength. The second thunderstorm on July 11, 1984 extended in the vertical to a height of
approximately 14 km, whereas the horizontal extent was about 50 km (see fig. 2.11). A representative
particle velocity through the disturbance is about 15m/s. Such a particle would take less than 3 h to
travel through the disturbance.

ZIERIKZEE

DE BILT

LELYSTAD

EELDE

1z ur 14 UT

Fig. 2.10. Surface pressure as a function of time at four stations in The Netherlands along the path of the thunderstorms. See fig. 2.1 for the
location of the stations.
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direclion of
propagation

12000 m

100 km

Fig. 2.11. Schematic representation of the precipitition features in the thunderstorms derived from the radar equipment based at De Bilt (DB) on
Tuly 11, 1984, 12:32UT (black: relatively intense precipitation). The other stations indicated are Zienkzee {Z) (323 in fgure 2.1, Lelystad (L)
{268} and Eelde (E) (280}, The complex of thunderstorms is meving in o northeasterly dircetion. Also indicated are the maximum heights of the
cchos at several points, For more details on this case, see higs. 6.8 and 6.9,

Another time scale to consider is the total lifetime of a weather system. The sea breeze circulation
has a lifetime of about 12 h, after which it becomes a land breeze, or just dies out. The lifetime of a
typical fair-weather cumulus cloud is about 1h, whereas thunderstorms may persist for more than 24 h
and tropical cyclones may persist for more than a weck. In fact, one of the most persistent Atlantic
tropical cyclones on record is Ginger (5 September-5 October 1972) [Fendell 1974]. By dividing the
Lagrangian time scale by the total lifetime, we obtain a dimensionless time scale, 7, which gives an
impression of the coherence in time of the particular system. For an arbitrary eddy in the surface layer
of the atmosphere, T will be close to or less than unity. This implies that, after a time equal to the
Lagrangian time scale, the eddy has lost its identity. This is a characteristic of incoherence in time and
unpredictability, i.c. turbulence. In the case of the fair-weather cumulus cloud, T lics between 1 and 2.
For the thunderstorm and the sea breeze, T is of the order of 5. A tropical cyclone is one of the most
“time-coherent” meso-scale systems. Its Lagrangian time scale may be about 12 h (see sections 5.5 and
6.7), while its total lifetime is typically 5 to 10 days, which makes T ~ 10-20. It should be stressed that
T is not the only measure of coherence. As well as coherence in time, there can also be coherence in
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space. The coherent motion of billions of fluid molecules in a Idrge area, even if it is only for T~1, is
just as remarkable as the coherent motion of a few molecules in a small area for 7> 1.

3. Models, equations and approximations
3.1. Basic equations

In this section we will review the models, equations and approximations which are used and applied
when investigating meso-scale circulations theoretically. We will also get a first impression of the
mechanisms that are responsible for triggering these circulations.

The laws governing the dynamical and thermal behaviour of the atmosphere are comservation of
momentum, mass, and energy. These laws can be expressed mathematically as follows [e.g., Batchelor
1967, Holton 1979, Kundu 1990],

dv/dt=—aVp-gk-20 xv+Fr, (3.1)
dp/dt=-pV-v, (3.2)
d@=c¢,dT +pda. (3.3)

In these equations v is the air velocity, a the specific volume, p the pressure, g the acceleration due to
gravity, 2 the angular velocity of the earth, Fr the friction force per unit mass, p the density (= lla) T
the temperature, Q the diabatic heating per unit mass, c,, is the specific heat at constant volume and £ is
the unit vertical vector. Since there are four unknowns (v ,p, T, and p), we have to supplement the
above system of equations with one additional equation, namely the equation of state. We can assume
that air is an ideal gas. Therefore,

pa=RT, (3.4)

where R is the gas constant for dry air. It is almost impossible to solve the system of equations (3.1-3.4)
analytically, except perhaps in very simple special cases. The (approximate) solution, or integration in
time, of these equations by computer is possible, but difficult. Analysis of the linearized versions of
these equations indicates that the solution contains many kinds of waves, such as sound waves, gravity
waves and inertial waves [e.g., Pielke 1984]. Sound waves are of no meteorological significance, but are
nevertheless the cause of many of the difficulties in the numerical analysis of these equations. One can
make certain approximations to the equations which eliminate (filter out) sound waves from the
solution while leaving the interesting part of the solution unaffected. In the next section we will review
the various mathematical and physical approximations which are made in the theoretical investigation
of meso-scale atmospheric circulations,

3.2. Approximations

The Boussinesq approximation. A very popular approximation to the primitive equations (3.1-3.4)
is the so-called Boussinesq approximation. This approximation was originally made by Oberbeck [1879)
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and Boussinesq [1903] for a layer of incompressible fluid in the laboratory. By “incompressible” we
mean that the density is nof a function of pressure, in which case the temperature is the most important
property determining the density of air. Basically, the Boussinesq approximation states that variations in
density, resulting from temperature variations, are only taken into account in the vertical component of
the equation of motion. But, even in this cquation the density variations are only accounted for when
they appear in combination with the acceleration due to gravity. Equations (3.1) and (3.2) in the
Boussinesq approximation become [sce c.g., Chandrasekhar 1961, Turner 1973]

do/di = —(1/p,)Vp' +(T"/T,)gk 292 x v +Fr, (3.5)
Veo=0. (3.6)

In these equations the prime denotes a departure from a reference state (denoted by a subscript, zero)
and the subscript, m, refers to a mecan of this reference state over the total domain in question. Any
variable, F(x, y, z, {), can be written as,

Fx,y,z, )= F(2) + F'(x, y, 2, 1) . (3.7)

£, is defined as

Fu= 1 | Rz, (38)

where H is the total depth of the domain in question. The reference state is horizontally homogeneous
and in hydrostatic equilibrium (see section 3.3). In later sections we will investigate situations where the
reference state is also a function of a horizontal coordinate, i.e. Fy(x, z).

In cgs. (3.5) and (3.6), the z-dependence of the density in the reference state is neglected. This is
acceptable for a relatively thin layer of fluid in the laboratory where temperature variations between
upper and lower boundaries are usually less than 10 K. For variations in temperature of less than 10K
the density of a liquid varies by no more than 1% [Chandrasekhar 1961].

However, it is not possible to apply the so-called Boussinesq equations (3.5) and (3.6) to the
compressible atmosphere unless one carefully reconsiders the premises of the approximations. This was
done, among others, by Spiegel and Veronis [1960}, Ogura and Phillips [1962], and Dutton and Fichtl
[1969]. Broadly speaking, the conclusion of these studies was that the Boussinesq approximation for an
incompressible fluid is applicable to atmospheric motions which do not extend beyond a height of
approximately 1km. These motions are termed “shallow”. The flow associated with a fair-weather
cumulus cloud is an example of a shallow circulation. For the so-called deep motions, associated with,
for example, a thunderstorm, a slightly different set of equations is applicable. According to the scale
analysis given by Dutton [1976], eqs. (3.1) and (3.2) for deep motions become

dv/di = —(1/p,)Vp' +(T'IT,— p'Ip,)gk — 292 X v + Fr, (3.9)

V-(p,v)=0. (3.10)
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The main difference between these equations and those applicable to shallow circulations is that the
vertical gradient of the reference density is not neglected in the pressure-gradient terms and the
continuity equation. Also, the pressure perturbation is not neglected in the buoyancy term [the second
term on the right-hand side of eq. (3.9)].

Both forms of the continuity equation, (3.6) and (3.10), guarantee the absence of the meteorologi-
cally uninteresting sound waves [Ogura and Phillips 1962]. Due to this property, the term “anelastic” or
“sound-proof” is sometimes used to describe the system of equations (3.5, 3.6) or (3.9, 3.10).

Circulation. In order to appreciate the differences in the consequences for the flow between the
shallow and the deep approximation, it is worthwhile to look at the equation for the circulation
resulting from these approximations. Circulation is defined as,

c?ggn-ds, (3.11)

i.e. as the line integral about a closed contour of the component of the velocity which is locally tangent
to the contour (see fig. 3.1). An cquation for the change in the circulation around the area, A, for
shallow and for decp circulations can be deduced from the fact that

d; 35 e (3.12)

by applying Stokes theorem [e.g., Holton 1979], and substituting eq. (3.5) or (3.9). The resulting
circulation theorems for the shallow and the deep circulations, respectively, are (neglecting friction)

cil_fh”z‘”;(“x”)'ﬁdA+fjg(VBX§)-ridA, (3.130)
Vp, X Vp'
c:f f P X VP pda - sz (2 X v)- ndA+”g(VBxk) AdA, (3.13b)
pu
A A

where 1 is the unit vector normal to area A (see fig. 3.1) and the buoyancy, B, is defined as

closed contour

a4

<¢

Fig. 3.1, Definition of circulation (see text).
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B=T'IT, for shallow flow, (3.14a)
B=T'T,-p'ip,=a'la, for deep flow. (3.14b)

The last equality in (3.14b) is the Boussinesq approximation of the equation of statc (3.4).

Circulation can be generated by the Coriolis effect and by the so-called baroclinic effect. The latter
clfect has two components: onc associated with the coupling of horizontal pressure gradients and
vertical density gradients (which we will henceforth call the inertial effect of vertical variations in
density) and the other associated with the coupling of horizontal density (buoyancy) gradients and
vertical pressure gradients (which we will henceforth call the buoyancy effect). The former component is
apparently not present in the cquations for shallow flow. Only the equations applicable to deep
circulations allow for the generation of circulation in vertical planes due to the fact that isobars are
inclined to the horizontal.

The inertial effect is not present in the shallow approximation because the vertical variation of the
density has been neglected. It is rather surprising that this is considered possible by many workers, since
p decreases by about 10% in the lowest kilometer of a neutrally stratified atmosphere. Therefore, when
these equations are used to describe the large boundary layer eddies with vertical scales in the order of
I km, crrors as large as 10% may be expected.

The equations in terms of potential temperamre and Exner function. A slightly different approxi-
mation to the primitive equations (3.1-3.3), which does more justice to the compressibility of air (i.e.
the basic vertical variation of density), was proposed by Ogura and Phillips [1962]. 1nstead of using the
pressure, p, and the density, p, as variables in the equations, they used the so-called Exner function
le.g., Exner 1925), /I, and the potential temperature, #. The Exner function is defined as

H=c,(plp) (3.15)

where p, is a reference pressure and « is the ratio R/c, = (¢, — ¢,)/c,. The factor ¢, is sometimes
omitted in (3.15). The potential temperature is defined as,

0=T(p./p)=c,TH. (3.16)
From egs. (3.3) and (3.4) it can be deduced [e.g., Holton 1979] that

défde=(1/11YdQ/dr. (3.17)
Equation (3.1) becomes

dvidi =~V — gk — 202 x v+ Fr. (3.18)
If we split f7 and 4 into a part associated with a reference state and a perturbation, as specified by (3.7),
and assume that the reference state is in hydrostatic balance (see section 3.3), the vertical component of

eq. (3.18) becomes

dw/dr=—6,01"laz +(8'/8,)g + Fr., (3.19a)
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where we have assumed that 8° <6, w is the vertical component of the flow velocity and Fr, is the
vertical component of the frictional force. We have neglected the vertical component of the Coriolis
force because its magnitude is usually much smaller than the buoyancy term. The horizontal component
of (3.18) becomes

duidi= -8, all'lax + fu + Fr_, (3.19b)
dv/di = =8, aIl'/dy - fu+Fr, . (3.19¢)

Here we have neglected the term involving the vertical velocity in the expression for the horizontal
component of the Coriolis force [e.g., Atkinson 1981]. The circulation cquation resulting from (3.19)
(neglecting friction) is

%—f=—fqu,xVH’-:idA—ffZVx(.va)-:‘:dA+J’[g(VBxlE)-:idA. (3.20)
A A A

where the buoyancy, B, is
B=48'l6,. (3.21)

We now see that the pressure has vanished from the buoyancy term. This is one advantage of using
potential temperature instead of density as a variable. Another advantage stems from the fact that the
potential temperature is conserved for dry adiabatic processes {eq. 3.17) and is, therefore, more
uniform with height than the density, which, duc to compressibility (density depends on pressure), is
not conserved. Therefore, the term due to the inertial effect of vertical potential density variations [the
first term on the rhs of (3.20)] is usually comparatively unimportant in the well mixed atmosphere,
because vertical gradients of potential density (or potential temperature) are comparatively small. In
very stable layers (inversions), in which 6, increases strongly with height, this term may be important
(see section 4.1.1) and, as we will sec later (section 5.1), is in fact responsible for wave propagation
along these inversions. Outside these special regions and provided horizontal pressure gradients are
small (outside hurricanes and thunderstorms this is usually the case), we can safely assume that 6, is a
constant, which eliminates the first term on the rhs of (3.20) and makes the pressure-gradient term in
(3.19) hnear. In sections 4.1 and 4.2 we shall see that this simplifies the analysis of this equation
considerably. We will investigate the validity of the Boussinesq approximation in more detail in section
4.1.1.

The continuity equation. Turning now to the continuity equation, we can climinate the density from
(3.2) with the help of (3.4), (3.15) and (3.16) to obtain

(d/d)(In 8+ (1-1/k)In 1) =V-v. (3.22)

For shallow dry-adiabatic motion Ogura and Phillips {1962] have shown that this equation can be
simplified to the incompressible (anelastic) form given in (3.6). As diabatic heat sources become
important and the vertical scale of the motion increases, the terms on the left-hand side of (3.22)
become increasingly important [see also Lipps and Hemler 1982, Lipps 1990].
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An alternative form of the continuity equation, which retains the effect of diabatic heat sources, can
be deduced from eq. (3.22), using cq. (3.17). The result is

(c,/RIN A 1At + (¢ /RIDw allJaz + V-v = (1/611) dQ/d1 , (3.23)

where {1 = H(z)+ H'(x, y, z,1). WII"< ] and 6" < 6, and if the first term in (3.23) can be neglected,
¢q. (3.16) and hydrostatic balance of the reference state can be used to write the remaining terms as

V-v - (gley)w=(116,11,)dQ/dr (3.24a)
or ds
V- (p o) ={p,/11,)dQ/dt . (3.24b)

In (3.240) ¢, = (yRT,)"” is the speed of sound (y= c,/cy). 1t can easily be shown that the diabatic
heating term on the rhs of (3.24a) is negligible for heating rates of the order of 1 K/h. Diabatic effects
must induce temperature changes of at least 10K/h before the rhs of (3.24a) is comparable in
magnitude to the second term on the lhs of (3.24a), which is the result of compressibility. Since
glea~10 "m ' (=pglecy is the adiabatic density lapse rate), the latter term is negligible compared to
dw/dz when the motion is shallow (H < 10" m). Therefore, according to this simple scaling argument,
the incompressible form (3.6) of the continuity equation can be used for shallow motion. When the
diabatic heating term is neglected, eq. (3.24a) becomes nearly identical to the continuity equation for
deep motion (3.10), derived by Dutton [1976).

The so-called pseudo-incompressible continuity equation (3.24b) was recently put forward by Durran
[1989] who showed that the use of this equation is justified when the Lagrangian time scale of the
disturbance is large compared to the time scale for sound wave propagation and the perturbation
pressure is small compared to the vertically varying mean state pressure. No assumption about the
magnitude of the perturbation potential temperature or the strength of the mean state stratification is
required.

Equations used in numerical models. Most numerical models designed in the last twenty years to
simulate, for example, deep cumulonimbus convection, sea breeze circulations, hurricanes, or large-
amplitude mountain waves are based (among other) on eqs. (3.17, 3.18, 3.22), although there are some
slight technical differences. Examples of such models are those of Steiner {1973], Pielke [1974], Tapp
and White [1976], Klemp and Wilhelmson [1978], Durran and Klemp [1983] and Willoughby et al.
[1984]. On the other hand, so-called large-eddy numerical models, designed to simulate shallow
convective and/or shear turbulence in the atmospheric boundary layer, have been based on equations
(3.5. 3.6) [c.g., Deardorff 1974, Nicuwstadt and Brost 1986, van Delden 1988, Schmidt and Schumann
1989, Mason 1989). Several carly models, designed to simulate deep convection, were based on
Dutton's [1976] equations (3.9) and (3.10) [e.g., Schlesinger 1975, Clark 1979].

3.3. Balanced circulations

Hydrostatic and geostrophic balance. Models which are based on the set of equations (3.17, 3.18,
3.22) are nearly as complex as reality. They allow for a whole spectrum of motions and waves. For
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example, the model devised by Klemp and Wilhelmson [1978] simulates high-frequency sound waves,
with periods of less than a few minutes, as well as low-frequency gravity-inertia waves, with periods of
several hours.

Generally one is only interested in a specific phenomenon. It is then worthwhile trying to make some
assumptions about the balance of forces so as to simplify the equations. For example, in the case of the
sea breeze one can assume hydrostatic balance, without altering the essential characteristics of the sea
breeze (see section 5.2). Hydrostatic balance can be expressed as (see eq. 3.18)

alliaz=—glf. (3.25)

This implies that the vertical component of the Coriolis force and friction have been neglected, and
dw/dt = 0. By assuming hydrostatic balance one has, of course, ruled out the possibility of convection,
which is a result of the instability of the state of hydrostatic balance (see section 4.1.2).

Another balance assumption frequently made in meteorology is geostrophic balance |e.g., Eliassen
1984], which implies that the horizontal component of (3.18) is replaced by

0ollfox=fv, 8alllay=—fu. (3.26)

We will see later that geostrophic balance is usually a stable equilibrium, implying that return to this
state of balance is guaranteed after it is disturbed. Nevertheless, it is rarely well satisfied on the
meso-scale. The reason for this is that heat sources and sinks due to phase changes of water or
absorption and emission of radiation, or momentum sources and sinks due to terrain inhomogeneities
(hills, lakes), may upset geostrophic balance strongly at scales of A, ~1000km or less (see eq. 2.1},
while return to balance takes at least one inertial period, 7, ~ 18 h (see eq. (2.1); why this is so will be
explained in chapter 5). This is a relatively long time as far as meso-scale phenomena go. On the other
hand, meso-scale circulations are usually close to hydrostatic balance. Even though hydrostatic balance
is disturbed frequently by, for instance diabatic heating, return to this state of balance is attained in a
much shorter time (of the order of the Brunt-Vaisili period, 7, ~ 10 min, see eq. (2.1)), provided, of
course, that the balance is stable, which is actually not always the case (see Chapter 4).

The Rossby number. One can express the fact that meso-scale motions are usually not in geostrophic
balance in another way by saying that the Rossby number, defined as

Ro=U/Lf, (3.27)

where L is a typical horizontal scale and U is a typical velocity scale of the circulation, is of order of
unity or larger. Some researchers (e.g., Green and Dalu 1980, Emanuel 1982, Pielke 1984] have
suggested that the meso-scale could be defined as coinciding with those motions for which Ro~ 1. For
these motions the horizontal accelerations (dwu/dt) are of the same order of magnitude as the Coriolis
forces. Therefore circulations with Ro~1 are not in geostrophic balance, but one cannot ignore
Coriolis forces when trying to understand their dynamics. Emanuel [1982] has also defined the Rossby
number in a slightly different way by

_ (duy/dz)H

Ro 7 ,

(3.28)
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where H is the depth of the circulation and du,/dz is the vertical shear of a mean flow u, in the
x-direction. Ro, as defined in (3.28), is sometimes referred to as the thermal Rossby number, since the
vertical wind-shear in a geostrophically and hydrostatically balanced rotating fluid, such as the
atmosphere, is directly related to the horizontal thermal gradient by

(a6, /0z) il ay — (86,/ay) all,/az = — [ du,laz . (3.29)

Here we have assumed that the mean state also depends on the horizontal coordinate, y, i.e. the mean
state is baroclinic. The thermal Rossby number appears in the context of the problem of the stability of
thermal wind balance (see section 4.2).

The question of how the motion ficld and pressure field adjust to hydrostatic balance is of great
importance to the understanding of many meso-scale weather systems, especially the sometimes striking
differences in their structure. Think of, for example, the hurricane (see fig. 3.2) and the thunderstorm
(sce fig. 2.11). Despite the fact that both systems are just a group of decp cumulonimbus clouds, having
approximately the same dimensions, their dynamics and appearance on a radar screen are very
different. The hurricane or tropical cyclone is a balanced system, which evolves relatively slowly
through a succession of balanced states, whercas the thunderstorm is a very unstable (unbalanced)
system, i.e. accelerations are relatively large.

One aim of this review is to clarify the mechanisms which lie behind these differences. To this end, it
is important to gain an understanding of the conditions under which hydrostatic balance and geostrophic
balance and a combination of the two (i.c. thermal wind balance) may cxist or may become unstable.
Furthermore, if these cquilibria are stable, it is also important o gain insight into the way in which they
arc established, or re-established after being disturbed. These subjects come under the headings
“stability” (chapter 4) and “adjustment™ (chapter 5). respectively.

i
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Fig. 3.2, Schematic representation of the precipitation features in hurricane Alicia derived from radar on 18 August 1983, 1:28UT (black:
relatively intense precipitation). The wind is oriented anticlockwise and approximately parallel to the precipitation bands. The solid line indicates
the aircraft Might track along which vertical profiles of the vertical velocity were measured. These are shown below in fig. 5.12 [after Marks and
Houze 1987].
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3.4. Simplified models of the atmosphere

In addition to mathematical approximations, one can also make approximations regardin.g the
physics of a specific problem, using among others the fact that the atmosphere is close to some kind of
balanced state. A very popular simplification, which originated in the early years of numerical weather
prediction, when computer power was limited, is to assume that the atmosphere consists of only a few
layers. This approach works best for relatively large-scale motions in which vertical velocities are much
smaller than horizontal velocities. In that case the hydrostatic approximation can usually be made. This,
in turn, permits the use of pressure or potential temperature as vertical coordinate. The pressure
coordinate has been used most widely, mainly because the continuity equation has a very simple foF{n,
and also because density does not appear explicitly (therefore, the complicating effect of compressibility
in the equations is partly eliminated) and sound waves are completely filtered out. However, because
the earth’s surface is not a level of constant pressure, principally because of orography, problems arise
when the lower boundary has to be incorporated in the model. Therefore, Phillips [1957] proposed, as
vertical coordinate, the pressure normalized by the surface pressure, p.. This coordinate, denoted by

G'EP‘IP, , (3.302])

or, alternately [e.g., Anthes and Warner 1978]

a=(p-p)(p.—p), (3.30b)

is used in most advanced numerical models for weather prediction.

When orography is relatively steep, as is the case frequently on the meso-state, this so-called sigma
coordinate system does not work very well [Kasahara 1974]. A terrain-following coordinate proposed by
Gal-Chen and Somerville [1975] is then a much better alternative. This coordinate, defined as

n=z(z—-z)}(z,—z,) or n=(z—-2)/(z,~z2,), (3.31)

where z_and z, are the height of the lower and upper boundary, respectively, has been adopted in many
numerical models which are designed to simulate air flow over mountains [Gross 1985, Schumann et al.
1987, Physick 1988]. An even more sophisticated vertical coordinate is used by Adrian and Fiedler
[1991] to simulate air flow over very complex terrain.

Another important vertical coordinate {(used in numerical meso-scale modelling) is potential tem-
perature (see eq. 3.16). In adiabatic conditions, surfaces of equal potential temperature {(called
isentropic surfaces or isentropes) are material surfaces (see eq. 3.17). This has the attraction of avoiding
vertical advection, which usually is the source of large truncation errors. When modelling the evolution
of fronts with strong horizontal contrasts in potential temperature, isentropic coordinates are particular-
ly convenient. Of course there are also some disadvantages, especially concerning the application of
boundary conditions. More about the use of this coordinate can be found in Hsu in Arakawa [1990].

The shallow water equations. A very popular, conceptually simple model which is frequently
adopted to investigate flow over relatively steep mountains is the so-called shallow water system, or
hydraulic model. The atmosphere is approximate by a set of layers of constant density. The so-called
hydraulic assumptions are [e.g. Lawrence 1990]: (i) the fluid is inviscid, (ii) the pressure is hydrostatic,
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and (iii) within each layer the density is constant and the velocity varies only in the flow direction. An
example of such a configuration is shown in fig. 3.3a, taken from Haderlein [1989]. Following Davies
[1984), Haderlein modelied the motion of a cold front moving over orography (the Alps) by two
isopycnic layers. The cold air is represented by the high-density fluid. The free surface between the two
layers, which descends to the ground, represents the frontal surface. Many authors [sce Baines 1987]
have used this model to investigate the flow over mountains (see fig. 3.3b). The set of equations
governing the behaviour of the cold fluid in fig. 3.3b is:

dulot+udulox=—g'(dlox)(h+ h,) + fu, (3.32)
dvlat+udviox=—flu—uy), (3.33)
all/at+ (afax)(huy=0, (3.34)

in which we have set all y-derivatives equal to zero [see Gill 1982]. In these equations « and v are the
horizontal wind components, / is the height of the free surface, /r,, the height of the lower boundary,
g' = g(p, — p,)Ip, is the reduced gravity and u, is the background steady geostrophic wind velocity.
There is no geostrophic wind in the y-direction.

Haderlein [1989] and Davies | 1984] assign lictitious potential temperaturcs 6, and &, to the two layers,
making g' = g(#, — 6,)/6,. However, because of compressibility, a layer of constant density cannot be a
layer of constant potential temperature (or potential density) if the fluid is air. It can casily be shown
that a layer of compressible air with constant density is gravitationally unstable (see section 4.1.2).
Egger [1989] has documented the differences between the isopycnic model (in which compressibility is
neglected) and the isentropic model (consisting of layers of constant potential temperature). A

warm fluid P,
e
ree suias

cold fiuid P,

(b}}

orography

Fig. 3.3. (a) The hydraulic model as used to moded a cold front moving over orography. Below the frontal surface the density is p,, while above and
to the right of the frontal surface the density is p. [after Davies 1984, Haderlein 1989]. (b} The hydraulic model as used to simulate flow over
mountiing,
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Fig. 3.4. Schematic diagram of Qoyama’s {1969] three-layer hurricane model. The vaniables p, ki, w, v, w and Q" ure the layer density, the layer
thickness. the tangential velocity, the radial velocity, the vertical velocity at the top of the boundary layer (0) and the diabatic mass flux, respectively
(sce text).

description of an isentropic model can be found in Heimann [1986]. Although the respective model
equations are very similar, there are some important differences, espectally with regard to the relation
between pressure and height. Nevertheless, because of its simplicity, and the ease with which orography
is incorporated in the shallow water system, this model has been used to simulate a wide variety of
atmospheric circulations, from baroclinic instability [Phillips 1951, Rao and Simons 1970], to tropical
cylones [Ooyama 1969, DeMaria and Schubert 1984), fronts [Davies 1984], and fiow over mountains
[Long 1953b].

Ooyama’s tropical cyclone model. It is worth describing the model of Qoyama [1969] because we
will refer to it later. Ooyama’s tropical cyclone model consists of three axisymmetric superposed
shatlow-water layers (see fig. 3.4). The thickness of the lower layer, i.e. the boundary layer, is assumed
constant. Frictional convergence in this layer will lead to a mass flux into the layer above. The thickness
of the upper two layers may vary due to convergence or divergence, or mass fluxes between the layers.
The density of the boundary layer is equal to the density of the layer just above, while the density of the
upper layer is a factor £ smaller. Diabatic heating (* (") is represented as a mass flux from layer 1 to
layer 2. Due to this, the thickness of the upper layer grows at the cost of the thickness of the lower
layer. Thus, the pressure in the upper layer increases while the pressure in the lower layers remains
unchanged. Therefore, the mass flux, “Q", mimics the effect of heating on the pressure distribution in
the atmosphere. This relatively simple parameterisation of diabatic heating is very ingenious because it
also mimics quite realistically the effect of heating on the potential vorticity distribution in the
atmosphere. We will return to this subject in section 6.7.

Ooyama's [1969] model was adopted later also by DeMaria and Schubert [1984]. More recently,
DeMaria and Pickle [1988] relaxed the incompressible layer assumption and constructed a three-layer
model with layers of constant potential temperature.

4. Stability

In this chapter we will be concerned with certain (balanced) steady flow states, such as hydrostatic
balance, geostrophic balance, a combination of these two (thermal wind balance), and also with more
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general flow conditions with vertical shear imposed by unspecified (background) large-scale and
boundary conditions. We will find conditions under which a secondary circulation feeding on the
potential and/or kinetic energy of the balanced or background state can exist. The instabilities which
give rise to these secondary flows will be termed static if they feed only on the potential energy of the
background state and dynamic if they feed on the kinetic energy of the background state. We will
consider two prototype problems. First we will discuss the classical problem of the stability of vertically
sheared flow in presence of a potential temperature stratification neglecting Coriolis forces. Stratified
shear flow can become unstable due to thermal instability, and also duc to dynamic instability of the
shear wind profile. Secondly, we will investigate the stability of geostrophic and hydrostatic balance with
respect to certain, so-called symmetric, perturbations. Here, inertial forces such as the Coriolis force will
introduce new phenomena.

The analysis of these two prototype problems will give us an idea of the time and space scales, as
well as of the parameters characterizing the secondary flows and possible oscillations around the
specificd steady background states, We will find out more about how the characteristic time and space
scales, given in eq. {2.1), are related to specific dynamical processes.

In this chapter we will use two methods to analyse the stability of an equilibrium state. The first
method is the method of normal modes or, in other words, linear wave perturbation analysis, and the
second method is the parcel method. These methods are used very often in meteorology. The parcel
method gives considerable physical insight, but requires quite a few approximations and, moreover,
does not give any information on the length scale of the circulation resulting from the instability [e.g.,
Thorpe et al. 1989]. For this information we have 1o turn to linear wave perturbation analysis, which,
unfortunately, is mathematically more involved. In section 6.1 we will discuss a third method to analyse
the stability of an equilibrium state, called the slice method.

We will start with linear perturbation analysis. We will derive, analyse and discuss the equation
governing wavelike perturbations of a stratified inviscid (no friction) steady sheared flow. This equation
is relatively complicated. We will only be able to analyse the effects of stratification and shear
separately. In section 4.1.3 we will employ the parcel method to investigate the effects of stratification
and shear together.

The discussion in section 4.1.1 will also give some additional information of the validity of the
shallow Boussinesq approximation.

4.1. Stability of stratified shear flow
4.1.1. The stability equation in the inviscid case
The method of normal modes. In this section we will investigate the stability of a plane parallel shear
flow, u,(z), in the presence of a potential temperature stratification, 6,(z). Typical profiles of u,(z) and
6,(z) are shown in fig. 4.1. To simplify matters, we will neglect friction and the rotation of the earth.
We will also assume that there is no diabatic heating. With these assumptions, egs. (3.17), (3.19a,b),
and (3.24a) linearized around the hydrostatically balanced state specified by u,(z) and §,(z) are
dufdt=—u,dulox — wou,/dz — 8 oflfax, (4.1)
dv/at=—u,dv/dx — 6, 9ll/ay, (4.2)

dwlat=—u, dwldx — 6, alllaz + (8/6,)g , (4.3)
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Fig. 4.1. The profiles of potential temperature, 8, and the horizontal wind velocity, u,. measured at Cabauw, The Netherlands, on June 23, 1981,
at 9: 34 UT.

80/dt=—u,08/dx — waf/az, (4.4)
duldx +dvldy + dwloz =(glci)w . (4.5)

In the above five equations we have dropped the primes. The variables, u, v, w, IT and @ are small
compared to u,(z), 11,(z) and §,(z), respectively. The linearization is valid as long as , v, w, 8 and [T
do not deviate greatly from the reference state.

We now assume wavelike solutions of the form

1] U
v vV
w|=| W |expli{ax + By — wi!)], (4.6)
6 e
i1 P

where « and B are horizontal wave-numbers in the x- and y-direction, respectively, w is a frequency or a
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growth rate, and U, V, W, @ and P are height-dependent amplitudes. The system of equations
(4.1-4.5) transforms into

(—iw +iau,)U + Du,W +ia,P=10, (4.7)
(lw +iau,)V +ipg,P =0, (4.8)
(—iw tiau,)W+6,DP-(g/8,)0=0, (4.9)
(Fiw tiau,)@+ I'wW=0, (4.10)
iaU +iBV +DW - (glc))W=0, (4.11)

where I'=d6,/dz is the so-called lapse rate and D =d/dz. The above system of five ordinary
differential equations can be reduced to one differential equation in W of the form

D'W +5(z) DW + H{z)W=0, (4.12)

with

s(z)="Tig,-glc, (4.13)

a D’u, . al” Du, ool (é @ Duu) N grk’
o Wy,

*

==k - ;

r(z) w, w;, 8, Co

ld?‘\gf.\é— Ou('. . U}b:. %LC;-’L{OB s , i

where w, = afut, — ¢,), ¢, = w/a is the phase speed of waves in the x-direction, K™ = a” + . Equation
(4.12) can be transformed into a Helmholtz equation of the form

e
o)

D +mW =0, (4.14)
where
; |
W = Wexp(i fs{z) dz) , (4.15)
,,,2=_k3_aD2"‘-‘+grkf+“rD""_£ D_I‘_agD:¢‘,+£;(£_ g,) (4.16)
wp an;) wpgn 40;, 2&) wDC,] 2(.'(-. Blr ZCB

[e.g., Tolstoy 1973]. Equation (4.14) (with 4.16), together with appropriate boundary conditions,
defines the basic eigenvalue problem for inviscid parallel shear flow in the presence of stratification. By
solving this problem we can infer the time dependence (i.e. stability) and the vertical structure of
inviscid waves in stratified shear flow.

The stability of the wave depends on the imaginary part, c,, of the phase speed. c,. If ¢ is positive,
the wave amplitude will grow expoenentially in time, implying that the basic state (i, 6,} is unstable.
With regard to the vertical structure of the wave, if m"” is constant, there are two types of solution to
(4.14), depending on the sign of nr’,
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W= Aexp(pz)+ Bexp(—puz) if m* <0, (4.17a)

W = Acos(mz)+ Bsin(mz) if m*>0, (4.17b)

where u’ = —m*. The coefficients A and B are determined by the boundary conditions. If the wave is
generated by mountains or hills with dimensions such that m° <0 (in which case the boundary
conditions are such that the coefficient A is zero), the wave amplitude decays with height. This type of
wave is called “evanescent”, meaning *“vanishing” or “quickly facing” [Gill 1982, p. 143]. When m” >0,
the solution is wavelike in the vertical, i.e. waves can propagate freely upwards and downwards.

According to (4.16), the sign of m” (and therefore the character of the solution) is determined by
many different effects. Basically, these are: buoyancy, vertical wind shear, the inertial effect of I, and
compressibility. In the shallow Boussmesq approximation the inertial effect of I is neglected complete-
ly. The effect of compressibility in the continuity equation (3.24a) (the term containing c;) is also
neglected. The term “shallow” stems from this last approximation. This implies that all terms on the rhs
of (4.16) except the first three are neglected. In the following we will examine the validity of this
approximation in a little more detail.

Another look at the validity of the Boussinesq approximation. The sign of m® depends on the
horizontal wavelength of the wave, as well as on the mean background temperature and velocity
profiles. Let us compare the order of magnitude of the terms in (4.16). We will do this for the velocity
and potential temperature profiles shown in fig. 4.1. Representative values for 8,, «,, I', DI, Du, and
D’u, in the layer between 1000 and 2000m are 290K, 4ms ', 2x10 7 Km ™!, 5x10"Km ™,
3x10 s 'and 3% 10 *m "5, respectively. With these values, the fifth and sixth term on the ths of
(4.16) become, respectively.

¥

3r46;=10"m™>, (DN/26,=10"m™?.

The last term on the rhs of (4.16) is of the order 10" These magnitudes must be compared with the
magnitude of lhe first term on the ths of (4.16), k* =d#%L°, where L is the horizontal wavelenglh For
L= lOOm K ~4x107m™?; for L=1000m, K°~4x10°m™ and for L=10000m, k*~4Xx
10" "m . Thus, we see that when the horizontal wavelength of the disturbance is about 10 km or less,
the fifth, sixth and eighth terms on the rhs of (4.16) can be neglected in this case. The upper limit to the
horizontal wavelength is determined in the first place by the second derivative with respect to z of the
potential temperature. If DI =0, the sixth term in (4.16) vanishes. The fifth and eighth terms can be
neglected if the horizontal wavelength of the circulation is about 100 km or less. It is stressed that this
scale analysis must be repeated for every separate case.

The second, fourth and seventh terms in (4.16) can also be compared without having to make
assumptions about a/wp,. In the layer at 1000-2000 m in the case shown in fig. 4.1 we have

Diuy=3x10""m™'s™", I(Du,)/6,=2x10"*m™"'s™", g(Du)/ci=3x10"m " s,
Therefore, the fourth and seventh terms can be neglected compared to the second term. The seventh

. . . 0 . 2 .
term, however, could become important in a region of large vertical wind-shear. Furthermore, D"u,, is
very sensitive to slight variations in u, and may easily become zero.
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The expression for m” (4.16), appropriate for the layer at 1000-2000 m in fig. 4.1 and relatively short
horizontal wavelengths, becomes

m+ k= ~(D%uy) /(g ~ c}t k:Nz'faz(”u i f:)z =0, (4.18)
where
= g’é[_‘j—% (4.19)

is the Brunt-Viisila frequency or buoyancy frequency [Turner 1973] which was already introduced in
¢q. (2.1). The parameter, !/, is called the Scorer parameter for transient buoyancy waves, after R.S.
Scorer [1949], who first demonstrated the importance of this parameter in the dynamics of mountain-
generated stationary buoyancy waves.

The fourth, fifth and sixth terms on the rhs of (4.16) arise due to the vertical variation of 6,. If this
variation had been neglected in egs. (3.19a,b), which is equivalent to the shallow Boussinesq
approximation, these terms would not have appeared. In other words, these terms are a manifestation
of the inertial effect of vertical potential temperature variation (generation of circulation due to the
coupling of vertical potential temperature gradients and horizontal pressure gradients), discussed below
eq. (3.14). In the case shown in fig. 4.1, this effect appears to be unimportant in the upper part of the
so-called convective layer between z = 1000 m and z = 2000 m. However, between the heights of 2100
and 2400 m, there is a relatively strong potential temperature inversion in which [”is an order of
magnitude larger than below. In this Iayer the fifth term on the rhs of (4.16) certainly cannot be
neglected when L = 10km. Also, D*n, is close to zero in this layer, which implies that the fourth and
seventh terms cannot be neglected compared to the second term. In most books and publications [e.g.,
Yih 1980, Atkinson 1981, Drazin and Reid 1982}, however, the terms resulting from the inertial effect
of vertical potential density variations are neglected under the assumption that 6, (or p, in the case of
incompressible flow) varies relatively slowly with height. Usually the latter term on the lhs of the
continuity equallon (3.24a) is also neglected. This term is responsible for the last two terms (containing
the factor g/c;) in the definition of m” (4.16).

On the basis of the above analysis, it appears that the shallow Boussinesq approximation, in which
the second term on the lhs of (3.24a) is neglected and 6, is replaced by a constant 6, in (3.19a,b,c), is
applicable when the circulation has a vertical scale not much greater than about | km, and a horizontal
scale not greater than about 100 km, provided the vertical potential temperature gradient, I, is small.
How small depends on the particular situation. The limit on the vertical scale of the circulation is
determined by the assumption of incompressibility (the neglect of the term, wg/c; compared to dw/az
in ¢q. (3.24a)). The limit on the horizontal scale of the circulation is determined principally by the
neglect of the basic vertical variation of the potential temperature in the equations of motion
(3.19a,b,c).

The Taylor-Goldstein equation. If we neglect the basic vertical variation of potential temperature
(or potential density) in the equations of motion as well as the basic adiabatic variation in density in the
continuity equation, the function s(z) in (4.12) vanishes, implying that %"= W. The stability equation
becomes

D'W + (I - K )W=0. (4.20)
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This equation is called the Taylor-Goldstein equation, after Taylor [1931] and Goldstein [1931]
although, according to Drazin and Reid [1982), it appears that Haurwitz [1931] also derived a more
general version of this equation. In fact, much earlier, Rayleigh [1880, 1883] had already investigated
two special versions of this problem: one in which the stratification (6,) was neglected and the other in
which the background flow, «,, was neglected.

4.1.2. Waves and instability

Buoyance waves. If there is no background flow (u,=0) and if N* is constant throughout the
atmospheric layer in question and also greater than w”, eq. (4.20) possesses wave-like solutions (see egs.
4.14, 4.17). These waves are termed buoyancy waves. The solution of eq. (4.20) in this case can be
expressed as W~ Re{exp(iyz)} (where y is the vertical wave-number), provided the frequency and the
wave-numbers are related according to the dispersion relation

o> = KNIk +y3) = N'sin’g (4.21)

where ¢ is the angle which the wave vector makes with the vertical. Apparently, the frequency of
buoyancy waves cannot exceed N and depends on ¢, not on the wavelength. This is basically due to the
fact that the restoring force is directed along the vertical. If parcels are oscillating at an angle to the
vertical, implying that the wave is propagating at an angle to the horizontal, the restoring force will be
less than for vertically oscillating parcels. This will lead to a decrease in the frequency of oscillation.

Buoyancy waves belong to a large class of waves which owe their existence to gravity. They are
frequently referred to as “internal gravity waves”. However, to avoid confusion with another type of
internal gravity wave occurring along and below a layer with a large vertical potential temperature
gradient, we will stick to the term “buoyancy wave”. We will return to this theoretical distinction in
sections 5.1 and 5.4.

An interesting and complicating property of buoyancy waves is the fact that their phase propagation
is perpendicular to their energy propagation. Wave energy is transported with the group velocity. The
ratio of the vertical component of the group velocity to the horizontal component of the group velocity
can be deduced from (4.21) to be

Cg‘.'lcg,r = _k’ll'y .

From this equation we see that large-scale wave-packets with small & move nearly horizontaily while
short-scale wave-packets move nearly vertically [e.g., Hines 1972, Tolstoy 1973, Gossard and Hooke
1975, Kundu 1990].

There are many complicating factors affecting buoyancy waves in the atmosphere, the most obvious
being the height dependence of the buoyancy frequency, N. For example, waves may be trapped in
stable layers, such as the inversion shown in fig. 4.1, if N outside this layer is smaller than the wave
frequency. Also, the vertical structure of the background wind plays an important role. For example,
when u, = c_, we cannot find an acceptable solution to the wave equation (4.20) because the Scorer
parameter is infinite. The level where this is the case is called a critical level. Numerous experimental,
theoretical and numerical investigations have been carried out to find out what happens at the critical
level [e.g., Thorpe 1981, Gossard and Hooke 1975, Gill 1982].
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Static instability. Buoyancy waves become unstable when N * <0, because eq. (4.6) then contains a
factor exp(w!), where w, is the imaginary part of . The wave amplitude will grow exponentially when
, > (). This is sometimes referred to as Rayleigh-Taylor instability [Drazin and Reid 1981], or just static
instability. Rayleigh [1883] showed that instability could occur if N°(z) was negative somewhere in the
layer in question for any distribution of N-(z). Unstable buoyancy waves are in fact synonymous to
convection currents. Inspection of eq. (4.21) reveals that the growth rate |w] will attain a maximum
when &=, [n other words, inviscid convection cells will have very small horizontal wavelengths.
However, Rayleigh [1916a] showed that the inclusion of diffusion of heat and momentum by molecules
or by turbulent eddies would shift the wavelength of maximum growth rate towards a value in the order
of the depth, H, of the layer in which convection is taking place. To be more specific, Rayleigh {19164
included a term xV’8 on the rhs of eq. (3.17) and substituted Fr= »V’v in eq. (3.18) (x and v are
diffusion coefficients of, respectively, heat and momentum). Buoyant instability with the effect of
diffusion included is usually called Rayleigh-Bénard instability [Bénard 1900, Rayleigh 1916a], instead
of Rayleigh-Taylor instability.

Assuming stress-free boundaries at the ground and at z = H, the solution to eq. (4.20) becomes
W~ sin(wnz/H), where n is the vertical wave-number. The lowest mode (1= 1) represents cellular
motion spanning the total height of the layer. If N * <0, this is the fastest growing mode for a given
horizontal wavelength, L = 27/k. Figure 4.2 gives a qualitative impression of the growth rate (w;} as a
function of L in the inviscid case (eq. 4.21) and in the viscous case (both in the absence of background
wind-shear). If there is no viscosity or conduction, the preferred horizontal wavelength is infinitely
small. On the other hand, if there is viscosity and conduction, the preferred horizontal wavelengths
shifts towards values in the order of H, depending on the exact boundary conditions of the temperature
and the flow [sce Drazin and Reid 1981]. Figurc 4.3 gives an impression of the cellular flow resulting
from Rayleigh-Bénard instability.

In the last 25 years satellites have clearly revealed that there is a surprising degree of organization in
the distribution of cumulus clouds, especially over the ocean during polar air outbreaks [e.g., Agee
1987|. This organization, which strongly resembles the cellular organization of the flow observed in a
thin layer of fluid in the laboratory [e.g., Van Dyke 1982, Krishnamurti 1970], can seldomly be detected

A

inviscid

viscous

Fig. 4.2, Schematic phot of the growth rate, w, as a function of the wavelength, with viscosity and without viscosity.



Aarnowt van Delden, The dynamics of meso-scale atmospheric circalations 243

L

Fig. 4.3. The flow in a convection cell.

Fig. 4.4. Satellite (NOAA-7) photograph of the north-cast Adantic ocean and Greenland made on 19 February, 1984, at 17: 03 UT. The arrow
indicates the mean wind direction in the convective layer. Courtesy of the University of Dundee.
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by eyc from the ground, because the horizontal scale is too large. An example of such a case is shown in
fig. 4.4. Here air is flowing from the icc edge over a relatively warm sea surface. Due to the great
difference in temperature between the seawater and the air, vigorous convection currents develop.
When these convection currents reach the lifting condensation level, clouds appear. In the first instance
these clouds are almost invariably organized into streets (two-dimensional cells) oriented in the direction
of the background wind. After the air has been flowing over sea for a while the cloud-strects start
breaking up and gradually three-dimensional cellular patterns develop, quite similar to what is observed
in the laboratory. In many cascs these three-dimensional cloud patterns consist of an array of cells in
which a thin ring of clouds surrounds a large clear arca. These cells are called “open cells”. Also
possible are so-called “closed cells”, which are complementary to open cclls. In closed cells the clouds
are concentrated in the middle and are surrounded by a clear area. The degree of cloud cover in closed
cells is generally much larger than in open cells, hence the terms “open” and “closed™.

Longitudinal (oriented parallel to the mean wind direction) cloud streets usually occur when there is a
strong shear in the background wind (see e.g., Asai [1970a,b] and section 4.1.4). Numerical models of
three-dimensional shallow convection indicate that planform selection is also related to the shape of the
static (in the absence of convection) temperature profile 8,(z) [Veltischev and Zelnin (1975), van
Delden 1988]. Open cells are preferred when the greatest static instability is located adjacent to the
lower boundary, whereas closed cells are preferred when the greatest static instability is located adjacent
to the upper boundary. The (shape of the) static temperature profile is determined by processes other
than convection. such as diabatic heating (due to radiation and latent heat release), large-scale vertical
motion and changing boundary conditions. The transition from streets (or rolls) to open cells, seen in
fig. 4.4, is probably determined by the reduction of the shear in the background flow and by the steadily
increasing sca-surface temperature as the air flows southwards. The latter cffect induces a static
temperature profile which is extremely unstable near the sca surface. This favours the transition to open
cells.

Atmospheric convection cells differ principally from Rayleigh-Bénard cclls in two respects. They
generally have a larger aspect ratio (width divided by height). Rolls in the atmosphere may have an
aspect ratio of about 10 while three-dimensional cells may have aspect ratios up to about 50 [Agec
1987]. Also, atmospheric cells are frequently highly asymmetric in the horizontal, in the sense that the
horizontal dimension of the upward motion generally differs greatly from the horizontal dimension of
the downward motion. Modelling studies [van Delden 1985, Chlond 1988 reveal that latent heat release
in the updraught can induce both the large aspect ratio and the asymmetry of atmospheric convection
cells. This effect, and other effects of diabatic heating, will be discussed further in chapter 6.

4.1.3. Dynamic instability

Inflection point instability. Departing from a simplified form of the Taylor-Goldstein equation
(4.20), Rayleigh [1880] proved an important theorem about the growth of wave-like perturbations in
the presence of a shear flow (1, # () in a neutral environment (N*=0). This theorem (see¢ Drazin and
Reid [1981] for the proof) states that transverse perturbations (i.e. roll-like motions organized
perpendicular to the mean wind direction) will grow only if u, contains an inflection point, i.e. if Du,
changes sign somewhere. This is not to say that instability will always occur if this condition is fulfilled.
It is a necessary, but not sufficient condition. A stronger form of this theorem is due to Fjgrtoft [1950],
who demonstrated [see Drazin and Reid 1981] that if u, is a continuous function of z with only one
inflection point, then a necessary, but not sufficient condition for instability is that
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>
(D7uy )y = 1y(2)] <0, (4.22)

where z_ is the height at which D*u, =0. Fjgrtoft's condition (4.22) is illustrated in fig. 4.5. Another
way of stating this dynamic instability (if it occurs) is that an inviscid Auid cannot support a vorticity
maximum. The fluid develops transverse waves to relieve this vorticity maximum.

It is important to note that in the above we have considered an inviscid fluid. The extension of these
results to a viscous fluid is not straightforward because the influence of viscosity is not necessarily
stabilizing. Flows that are stable in the absence of viscosity may be unstable in the presence of viscosity
and vice versa.

Dynamic instability in the presence of stratification (the parcel method). In the previous two sections
we have considered independently the effect of wind-shear and the effect of stratification on the growth
of wavelike perturbations. In the next two sections we will consider briefly the case when there is both
shear and stratification in the background state.

Let us find out first which non-dimensional parameter(s) govern(s) this combined problem, using the
parcel method. Following Miles [1986], consider two air parcels of unit volume located at different
heights, z and z + Az, respectively, moving in a height-dependent background flow, i,(z). In order to
“mix” the two air parcels at a height z + y Az (0< y = 1), the lower parcel has to move up a distance
y Az while the upper parcel has to move down a distance (1 — y) Az. In a stable environment (N > 0)
Fjertoft’s condition (4.22) will certainly not be the only condition for instability, because work has to be
done against the buoyancy forces. The work done in raising a parcel of unit volume that is in
equilibrium at z =z, to 2=z, + { against the downward buoyancy force, F, is

uz) U(z)

(a) (b)

(c) (d)

Fig. 4.5. (a) Stuble: Uy <®; (b) stable: U7 =0; (c) stable: U= 0 at 2, but VU, - U,) =1, {d) possibly unstable: U7 =0at z, and UNU, - U)=0
{from Drazin and reid 1981).




286 Aarnont van Delden, The dynansics of meso-scale anmospheric circulations

HR Y
W= f Fdz. (4.23)
Here
F=glp,u(z)) = Pz, + D= gL dp,,/dz + O(L7), (4.24)
where
ppnl; L pll( prc[/p)r‘ e (425)

is the potential density of the environment (p,,,, = p,../ R6,) [see Gill 1982, pp. 54, 55]. In the absence
of diabatic processes, a compressible parcel of air conserves its potential density. It follows that

W: S %g(dppntldz)gz * (4'26)
The net work done in the mixing of the two parcels is
W=~ b g(dp,/d2){(y Az) + [(1 - ) Az} = ~ 1 g(dp,, [d2)(A2) . (4.27)

Due to conservation of momentum, the velocity of the mixed air parcel must be [u,(z) + u,(z + 42)]/2
(here we have neglected variations in density). Hence, the net change in kinetic energy is

AK it %prml(A"ll)E :) {dzg)

where Aw, = u,(z + Az) — ,(z). This kinetic energy is available for the mixing process. If AK <AW,
mixing will not take place. This corresponds to

A2
Ri= ———5>1, 4.29
I (due,/0z) (4.29)

where Ri is the so-called non-dimensional Richardson number, is a sufficient condition for stability of
stratificd shear flow. It can easily be verified that

N? = _( g'fppnl) dppulldz ‘ (4‘30)

A necessary, but not sufficient condition for instability is Ri <1. The dynamical instability which may
occur in buoyantly stable conditions (for ) <Ri<1) is usually calied Kelvin-Helmholiz instability.
The criterion (4.29) was derived in different ways by many authors [c.g., Richardson 1920,
Abarbanel et al. 1984, Miles 1986]. However, starting with the Taylor-Goldstein equation (4.20), Miles
[1961] and Howard [1961] have rigorously derived Ri>0.25 as a sufficient condition for stability. This
focuses attention on the realm 0.25 <Ri<1 for intensive theoretical and experimental investigation.
Investigations into the stability of a stratified parailel shear flow began with Helmholtz, who
determined the stability criteria for an unbounded atmosphere with a step-discontinuity in wind speed
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and density. Kelvin showed that the resulting disturbance developed a braided or “cat’s eye” pattern
[for the references, see Chandrasekhar 1961}. The papers by Miles and Howard, mentioned above,
were milestones. Howard [1961] was able to show, among other things, that the phase speed of an
unstable mode must match the speed of the background flow somewhere. At such a level, called a
critical level (see section 4.1.2), the Doppler shifted frequency, w,, (see the definition above eq. (4.14)),
of the perturbation becomes zero. Subsequent analysis by many other investigators dealt with more
general continuous wind speed and density profiles and realistic boundary conditions. The results of
these investigations in which the computer was indispensable, are quite complicated, especially when
compressibility is taken into account [e.g., Davis and Peltier 1976]. As an example of the complexity of
the problem, Howard and Maslowe [1973] showed that if the stratification, I", varies with height, stable
stratification (/"> 0) can in some circumstances be destabilizing due to the vorticity generated by
non-homogeneity.

The unstable Kelvin-Helmholtz disturbance grows by extracting energy from the mean flow.
Eventually it breaks to dissipate the energy in turbulence. However, if the stratification remains stable
away from the shear zone, the possibility exists that the shear energy can be used instead to generate an
internal wave, which can carry the energy over great distances from the shear layer.

4.1.4. Static and dynamic (in)stability in the presence of dissipation

The effect of wind-shear on buoyant instability (Asai’s analysis). In the previous two sections we
have discussed the influence of stable stratification on dynamical instability. In this section we will look
at the same problem from the opposite point of view, i.e. we will investigate the influence of wind-shear
on static (buoyant) instability. This problem was discussed in a series of papers by Asai [1970a,b]. We
will give a short review of the results obtained by Asai.

Let us define the operator, G(u), as follows:

G(u)=(a/at +u,d/ax — vV )u. (4.31)

Equations (4.1-4.3), including the effect of turbulent viscosity (assuming a constant viscosity coefficient,
v), can be rewritten as

G(u)=—8,001/3x — wdu,/dz + v d’u,/dz* | (4.32)
G(v)=-8,3l1/3y, (4.33)
G(w)=—8,8I1/az +(0/8,)g . (4.34)

Remembering that G is a linear operator only in the x- and y-direction, we now differentiate (4.32)
with respect to x, (4.33) with respect to y, and (4.34) with respect to z. Adding the results and using the
continuity equation (4.5), we obtain a Poisson equation for the Exner function,

8, VI + 2(du,/dz) dwiox + (g/6_) 38/3z =0. (4.35)
This equation shows that IT (or p) is determined by the shear as well as by the stratification or

buoyancy. The pressure perturbations resulting from the interaction of the vertical motion with the
mean vertical shear are termed dynamic, while the pressure perturbations resulting from buoyancy are
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termed static. Aircraft measurements of the perturbation pressure fields around the cloud base of
convective clouds due to LeMone et al. [1988a,b] showed that the pressure perturbation variations in
and around these clouds are principally dynamically induced. Pressure perturbation extrema measured
in decp sheared cumulus clouds were typically 1 hPa, with a range from 0.2 to 9.5hPa. In contrast, in
shallow clouds with little wind-shear the extrema were of the order of 0.1 hPa. In section 6.3 we will
discuss the important role played by dynamic pressure perturbations in thunderstorms.

Asai [1970a,b], like many others who did studies on the stability of steady wind-shear profiles in
combination with stratification, substituted @ for 8,. This approximation, together with the use of the
incompressible adiabatic version of the continuity equation (3.6), leads to the climination of II from the
problem. This is attained by operating with 8/9z on (4.35) and with V* on (4.34) and subtracting,
yielding

G(V*w) = (du,/dz") awlax + (g/0,) V3,0 . (4.36)

An cquation for the vertical component of the vorticity, { (=av/dx — du/dy), is easily obtained from
¢qs. (4.32) and (4.33):

G(¢) = (du,/dz) owldy . (4.37)
Equations (4.36) and (4.37) define the dynamical part of Asai’s problem. We need an equation for the
potential temperature to complete the formulation. The linearized potential temperature equation,

including the cffects of turbulent heat diffusion (again, assuming a constant coefficient of turbulent heat
transfer, ) is,

30/t + 1, 3010x — k V0 = —wd6,/dz + k d°,/dZ° . (4.38)

If the basic temperature profile is linear (i.c. I'is constant), the last term in (4.38) vanishes.
Let us now define the foliowing units of length {L}, time {¢} and temperature {T}:

(LY=H, {ty=Hiu*, {T)=TH=A8, (4.39)

where 1" is a characteristic velocity of the basic flow, as indicated in fig. 4.6. In terms of these units the
perturbation equations (4.36-4.38) become

(8/at+ u, dldx —Re ' V)P w = (d*u,/dz") aw/ax + Ri V6 , (4.40)
(8t + u, 8/ax — Re ' V7)) = (du,/dz) aw/ay, (4.41)
(8/91+ u,d/3x —Pr 'Re ' V)9 =~Tw, (4.42)

where we have the dimensionless parameters
Re = Hu*/v (the Reynolds number) , (4.43)

Pr= p/x (the Prandtl number), (4.44)
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Ri=gl'H@,(u*)* (the Richardson number). (4.45)

There is a relationship between Re, Ri and another dimensionless parameter, known as the Rayleigh
number Ra,

Ra=-Pr-Ri-Re*=—-gl'HY8 vk . (4.46)

Asai [1970a,b] assumed a mean potential temperature profile with a constant lapse rate (I is
constant) and substituted perturbations of the form,

3% W
[ ¢ ] S [ 4 ] expfi(ax + By — )], (4.47)
0 ¢

where, as in eq. (4.6), W(z), Z(z) and ©(z) are height-dependent amplitudes. Substituting this into the
system (4.40-4.42) yields a system of three ordinary differential equations for W(z), Z(z) and &(z).
With suitable boundary conditions at z=0 and z =1, this system can be transformed into a set of
algebraic equations by approximating the derivatives of W, Z and © with respect to z by finite
differences using about 20 intervals. Requiring the solution of this set of algebraic equations to be
nontrivial yields a frequency equation for w. The imaginary part of w represents the growth rate of the
perturbations. More about this numerical method of solution can be found in Asai [1970a].

Results. The basic velocity profiles chosen for investigation by Asai [1970b] were,
u(2)=41-Qz-17I", n=12,..., (4.48)

in addition to a profile with linear shear (profile (c) in fig. 4.6). The profiles (4.48) are symmetric about
mid-level (z=1/2), having a maximum of 1/2, and vanishing at the top and bottom. When n=1,

) .

u

a._b c

0 [

Fig. 4.6. The profiles of the basic flow for three cases whose stability properties are studied, (a) 2 shear Row with points of inflection indicated by
circles, (b} a plang Poiscuille flow, and (c) a Couctie flow [from Asai 1970b]. To 1ransform 1o nondimensional units (4.39) we choose H = h.
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(4.48) gives a parabolic profile without inflection points (a planc Poiscuille flow). When n =2, (4.48)
yiclds a jet-like profile with two inficction points. The jet becomes sharper as i increases. Asai [1970b]
only investigated the cases n=1 ((b} in fig. 4.6) and n =2 ((a) in fig. 4.6). It is very important to keep
in mind that we will not refer to any mechanism maintaining the basic flow with such profiles.

Asai [1970b] assumed that the perturbations had to satisfy perfectly conducting and stress-free top
and bottom boundary conditions. There is some inconsistency here, because the mean flow does not
satisfy these boundary conditions. Figures 4.7a,b,c show the growth rates of wavelike perturbations as a
function of the Richardson number and the total horizontal wave-number, & (=(a’ + 87)'"%), for the
basic velocity profiles shown in fig. 4.6, with a = 8, Ra= 10" and Pr=1.

The unstable domain in case (a) can be divided into two portions, one for large values of —Ri and
the other for small values of —Ri. Counterparts of the former instability domain can be observed in
both cases (b) and (c). However, no low-(—Ri) instability domain can be scen in cither (b) or {c). The
former instability domain is associated with buoyant instability modified by shear, while the latter,
low-(—Ri), instability domain must be associated with the inflection points in the basic velocity profile
(a). The wave-number of maximum instability, &k, (=2#/L_), is about 3 to 4 in cases (a) and (b)
(1.5< L.<2.2, in non-dimensional units). In the case of lincar shear (plane Couette flow), 2.5< L <
8. This implies that circulations, which are the result of buoyant instability in the presence of shear, will
have aspect ratios (L/H) of 1.5 to 8.

It is interesting to cxamine the growth rates of perturbations of different form. Figure 4.8 shows the
growth rates as a function of the ratio 8/, for the different velocity profiles, when Ri= —1, Ra = 10,
Pr=1 and k =2. Evidently, shear inhibits the growth of buoyantly unstable perturbations oriented
transverse to the mean flow. This is especially the case when the shear is constant. In other words, in

a b
\ Nl
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2 !
Ri 0 i
Lk -0.1 L L I 1 i ! 1
g °©o 2 4 6 8
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Ri
_10-2-
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105 © 2 4 6 8
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Fig. 4.7. Stability diagram for the shear profiles shown in fig. 4.6. Solid lines indicate the amplification rate in units of 10 's " as a function of Ri
and k. The dashed-dotted line indicates a preferred wave number for @ given value of Ri |from Asai 1970b].
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Fig. 4.8. Variations of the amplification rate, w,, with wave number Fig. 4.9. Varniation of the amplification rate with B/a for different
ratio, B/a, for the shear profiles shown in fig. 4.6 (=2, Ra= 1" and values of Ri for the shear profile (a) shown in fig. 4.6. Here Ra= 10"
Ri= -1} [from Aszi 1970b] and k =2v7 [Asai 1970b].

constant shear, convection will preferably appear in the form of rolls oriented along the mean wind
(longitudinal rolls).

Figure 4.9 shows the growth rates of perturbations as a function of the ratio 8/a for case (a) with
Ra=10" k=2VZ for a set of different negative Ri-values. Apparently, the transverse mode is
preferred when —Ri is small (dynamical instability), whereas the longitudinal mode is preferred when
—Ri is large (buoyant instability), although in the latter case the preference is not so clear cut,

Some observations. In the atmosphere cloud streets are almost always organized parallel to the mean
wind direction (see, ¢.g., fig. 4.4). Occasionally, however, transverse cloud streets are observed, such as
on the satellite image shown in fig. 4.10, which shows a view of northwestern France in a west to north-
westerly flow. As is typical on a spring day, convection is active only over land due to strong solar
heating. Transverse cloud streets are excited due to buoyant instability soon after the air reaches the
coast of northwestern France. According to the theory of Asai {1970a,b], the mean wind profile must
have a jet-like character with at least one inflection point. The radio sounding made at Trappes (see fig.
4.11a) shows that this is indeed the case below the temperature inversion (in the cloud layer). Fjgrtoft’s
condition (4.22) is satisfied at the inflection point above the jet. More to the south(east) there is a
transition to so-called popcorn cumuli. As expected, the wind profile measured at Bordeaux, which is
representative for this area, have very little shear and no inflection points below the temperature
inversion (see fig. 4.11b). A word of caution is in place here. The basic, static (in the absence of growing
perturbations) part of the wind profile cannot in fact be observed when this profile is linearly unstable,
because the perturbations will act to modify it. Therefore, the temperature and wind profiles, shown in
fig. 4.11, are the sum of a static part and a dynamic part. In the above example it has been tacitly
assumed that the static part dominates over the dynamic part.
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gl
[ TN

Fig. 4.10. Sacllite (NOAA-9) photograph of north-west France made on 28 March 1983, at 13: 21 UT. The locations of the measuring stations,
Trappes and Bordeaux are shown by the crosses. The mean wind direction at 1000 m is indicated by the artow, Courtesy of the KNMI, De Bili.

The stability of the Ekman boundary layer (analyses due to Lilly, Etling and Brown). Because of the
rather unrealistic boundary conditions and velocity profiles, the limited parameter range Asai investi-
gated, and many other uncertainties regarding the applicability of the model problem to the atmos-
phere, no more than qualitative conclusions can be drawn from Asai’s [1970a,b] work on the effect of
wind-shear on convection.

A steady wind profile, which is thought to be more realistic, is obtained when it is assumed that there
is an equilibrium between the pressure gradient force, the Coriolis force, and the viscous force. Solving
the equations corresponding to this equilibrium subject to appropriate boundary conditions, assuming
the diffusion coefficients, » and «, are constant, yields the so-called Ekman spiral velocity profile [see
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Fig. 4.11. Vertical profiles of the dominant component of the wind speed (thick solid line} and the potential temperature (thin solid line) measured
at (a) Trappes (dominant wind direction is 340°) and (b) Bordeaux (dominant wind direction is 300°) on 28 March 1983 a1 12 UT. The variation of
the wind direction with height is negligible.

Holton 1979]. This is one of the few analytical steady state solutions of the equations of motion
applicable to the atmosphere. However, the ideal Ekman spiral is hardly ever observed in the
atmosphere, partly because the eddy diffusion coefficients are not constant with height, and also
because it is an unstable solution under many circumstances [e.g., Faller 1963]. This stems from the fact
that the Ekman wind profile contains an inflection point.

Lilly (1966) was the first to investigate systematically the stability of the Ekman wind profile. He did
this for the special case of neutral static (buoyant) stability (I"=0). Using essentially the same
numerical method as Asai [1970a,b], described in the previous section, he investigated the growth of
small two-dimensional perturbations with a roll-axis orientation-angle &, counterclockwise from the
direction of the geostrophic wind vector superposed on Ekman spiral wind profile (see fig. 4.12). The
computations revealed that the neutral Ekman layer is most unstable to two-dimensional perturbations
with —30°< ¢ <15°. The preferred orientation angle depends strongly on the Reynolds number,
Re=v,D/v, where v, is the geostropic windspeed and D is the Ekman layer depth (=V/2v/f). Lilly
[1966] discovered that the instability at high Re was of the inflection point type (giving a preferred
£~ 15°), while the instability at low Re was of a completely different type. He named the latter type
“parallel instability”, because the secondary circulation abstracts energy from the mean flow component
parallel to the roll-axis through the Coriolis force.

Brown [1970] calculated numerically the shape and intensity of the secondary flow resulting from
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Fig. 4.12. Typical sccondary flow in the planctary boundary laver resulting from the instability of the Ekman boundary layer |[from Brown 1972].

Ekman layer instability and found that the rolls had a height of about 4D to 5D and an aspect ratio
(width divided by height) of about 2.5. The typical secondary flow is shown in fig. 4.12.

The cffect of stratification on Ekman layer instability has been investigated by several authors,
beginning with Etling [1971], Brown [1972], Kaylor and Faller [1972] and Asai and Nakasuji [1973]. To
give an impression of this cffect, fig. 4.13 shows the neutral stability curves (where w, = 0) for £ = 14°,
caiculated by Etling [1971], for different values of Ra (in which H = D and I' is constant) as a function
of Re and a, where a is the non-dimensional wave-number (=27 D/L) in the direction perpendicular to
the roll-axis. To the right of these curves there is instability. When the stratification is stable (Ra<0),
the parallel mode is unstable at lower Re than the inflection point mode, even at an angle, £, which is

L |
STABLE 1%10
o5k UN STABLE
Tinflection”
"parallel”
0
Re —

Fig. 4.13. Neutral curves, w, =, for different values of Ra (in which A = D) for £ = 14" [from Etling 1971].
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more favourable for the growth of the inflection point mode. However, the results of Etling [1971] also
show that, once the inflection point mode is unstable, its growth rate generally exceeds by far the
growth rate of the parallel mode. The wavelength of maximum parallel instability is about 30D, more
than twice as large as the wavelength of maximum inflection point instability.

Brown [1972] showed that when Ra >0 the preferred wavelength shifts to slightly smaller values
(~10D) and the preferred orientation becomes more parallel to the geostrophic wind. In fact buoyant
instability quickly starts to dominate the growth of the disturbance.

More information on this topic can be found in the review by Brown (1980).

4.2. Symmetric stability of thermal wind balance

Statement of the problem. In previous sections we have considered the stability of a steady state
characterized by height (z)-dependent temperature and wind profiles. We assumed that the secondary
flows, which develop as a result of instabilities of these steady states, possess time scales short enough
for the Coriolis force to be unimportant. Because meso-scale systems may have lifetimes of the order of
a day, it is obvious that this is a rather limited problem to investigate in this context. Therefore, in this
section we will consider a problem which applies to weather systems with time scales of at least several
hours. In this problem inertial forces, such as the Coriolis force, play a crucial role. More specifically,
we will investigate a simplified version of baroclinic (in)stability, namely symmerric baroclinic instability.
The analysis of this problem will yield additional wavelengths, frequencies and non-dimensional
parameters, governing the behaviour and of many meso-scale weather systems, such as the sea breeze
and the tropical cyclone.

Let us specify a background steady state, denoted by u,(y, z) and 8,(y, z), which is in hydrostatic
and geostrophic equilibrium with a large-scale pressure field, [1,(y, z). Since hydrostatic and geo-
strophic balance can be expressed as

Bl oz =-glt,, 6,alllay="—fu,, (4.49)
respectively, thermal wind balance (3.29) can be written as
—(fu,18,) 36,/ 0z + (g/8,) 36,/ ay = —f du,laz. (4.50)

The first term on the Ihs of (4.50) can be neglected compared to the second term if |36,/ay|>
|( fu,/g) 86,/8z|. Substituting typical values of «, (~10ms™'), g (10ms™), 96,/8z (5x10 °Km™")
and f, we obtain 96,/3y>5x10 'Km™" Hence, if the horizontal temperature-gradient is much
greater than about 10 ° K km ', which is usually the case in situations we are thinking of (fronts, sea
breeze circulations), we can express thermal wind balance as

(g/8. )06, /ay=—f du,loz . (4.51)

Here we have replaced 6, by a mean value, 6_, over the domain in question.

We will superpose disturbances u(y, z, 1), v(y, z,t), w(y, z,1), 6(y, z, t) and [I(y, z, 1) which are
independent of x, i.e. disturbances symmetric with respect to the x-axis, and proceed to derive an
equation governing the growth or decay of these disturbances. Therefore, we are looking at the
circulation perpendicular to the basic flow, u,, or, in the terminology of section (4.2.4), at longitudinal
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rolls (see fig. 4.14). Our starting point is the relatively simple set of inviscid equations for shallow flow
linearized around the background state,

duldt=—vau,/ay — wouy/dz + fv, (4.52)
duldt=—46, allloy — fu, (4.53)
awlot=—46_allloz +(0/8,)g, (4.54)
d0/ar=—v a6,/oy — waf,/oz+ (1/11,)dQ/dt, (4.55)
dvidy +owlaz=0. {4.56)

In (4.52) we have neglected the term involving the vertical velocity in the Coriolis force. This is justified
as long as du,/dz >2[2]cos ¢ ~ 10 *s ", In (4.55) we have replaced i1 by a constant mean value, 7.
The variation of 6, is neglected in the momentum conservation equations (4.52-4.54). We have seen
carlier (sections 3.2 and 4.1.1) that neglecting the vertical potential temperature variations in the
pressure gradient terms amounts to neglecting the generation of circulation in a vertical plane due to the
tilting to the horizontal of (disturbance) isobaric surfaces. Note that considering only symmetric
disturbances (i.c. longitudinal rolls) makes this set of equations relatively simple. If the disturbances
were also dependent on x, we would in fact be left with the ordinary baroclinic instability problem [e.g.,
Holton 1979, Stone 1966]. If the disturbances were only dependent on x and z, we would be left with the
Kelvin-Helmholtz instability problem (see sections 4.1.3 and 4.1.4).

Another approximation that is made in the above set of equations is the use of the incompressible
form of the continuity equation. This allows us to introduce a stream function ¢(x, z, 1), such that

zh

Fig. 4.14. Circulation in the y— plane resulting from the symmetric instability of the mean baroclinic current (¥, 2)



Aarnout van Delden, The dvnamics of meso-scale aimospheric circulations 297
v=agloz, w=-agfdy. (4.57)

Equations (4.53) and (4.54) can easily be combined to form an equation for the secondary circulation.
The result is

(810 =—f auldz —(gl8,) a8/ay , (4.58)

where we have assumed that f is constant and where V7 =2"/3y" +3*/az". The above equation shows
that the secondary circulation is forced by departures from thermal wind balance. By differentiating
(4.58) with respect to time and using (4.52) and (4.55) we obtain the following important linear
equation for the secondary circulation:

%F:lﬂ:—f?: 3;'€+282%—N2%-ﬁ%%?, (4.59)
where

Fr=f(f-au,ldy), (4.60)

§*=(g/f,)96,/ay = —f du,loz , (4.61)

N*=(gl8,)a8,/az. (4.62)

F, S and N are frequencies. N (the Brunt-Viisild or buoyancy frequency) has been introduced earlier
(see section 4.1.1). The other frequencies are the inertial frequency, F, and the baroclinic frequency, S.
Typical atmospheric values of these frequencies [Hoskins 1978] are

F~10""s™", §~05x107%s"", N~107s".

Thus, the time scale associated with convection and buoyancy waves, 1/N, is one to two orders of
magnitude smaller than the other two time scales. However, if we realize that the relative vorticity of
the background flow is {,= —au,/dy, we immediately see that the inertial frequency, which is
associated with adjustment to geostrophic balance, can increase significantly if the (background) flow
possesses positive (cyclonic) vorticity.

Mathematical analysis. For the moment we will assume no diabatic heat sources (DQ/dt =0). In an
unbounded domain we will look for solutions of the form (see fig. 4.15)

exp(iwt) explia(y sin ¢ + z cos ¢)] , (4.63)

where the angle, ¢, is defined as in section 4.1.2, below eq. (4.21). When we substitute (4.63) into
(4.59) we obtain an equation for the frequency,

w' =Nsin® ¢ —25sinpcos ¢ + F cos’ ¢ . (4.64)
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Fig. 415, Geometry of a vertically propagating wave with wavelength L. Particles vscillate as indicated by the arrows 2 an angle, &, to the
horizontal.

Note again (sce also eq. 4.21) that the frequency, o, is independent of the absolute value of the
wave-number, «. When S=0 and F=0, we arc left with the dispersion relation (4.21) for pure
buoyancy waves. When § =0 and N =0, only so-called inertia waves are possible. Inertia oscillations in
the horizontal owe their cxistence primarily to the carth’s rotation. However, inertia oscillations can
also be sustained if the vertical vorticity of the mean flow is positive. When only § =0, we are left with
the dispersion relation for so-called buoyancy—inertia waves, a mixture of buoyancy and inertia
oscillations. The time series of the wind direction measured on May 7 and on May § at station number
225, shown in fig. 2.4, is characteristic for the passage of an incrtia (~-buoyancy) wave. The passage of
the wave is marked by winds from the south prior to the passage of the wave-crest and winds [rom the
north after the passage of the wave-crest. The passage of the wave-crest at a particular point can be
identified with the onset of the sea breeze at that particular point. We will claborate further on the
relation between incrtia—buoyancy waves and the sea breeze in section 5.2

In the general case (N#0, F#0, §#0) we may write, after doing some straightforward algebra
[Coyama 1966],

207 =N+ F - Acos[2(¢ — ¢,)], (4.65)
where

cos(2¢,) = (N>~ F)IA, sin(2¢,)=2574, (4.66)

A=[(N - F ) +45')"". (4.67)

The minimum frequency, w,,,, corresponds to ¢ = ¢, (with A >0):

min?

20l =N+ F —[(N"+ F) - 44)'", (4.68)
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where ¢ is defined as
2a72 4
g=FN -5, (4.69)

which is proportional to Ertel’s potential vorticity*’. Instability can set in only when »® <0, i.e. when
either

N+ F'<0 or ¢<0. (4.70)

Interpretation. The potential vorticity of the background state is composed of two terms: one (F°N7)
is associated with the vertical component of the vorticity and the vertical stratification, and the other
(5*) is associated with the horizontal component of the vorticity and the horizontal temperature
gradient (baroclinicity). If there is no bareclinicity (S = (), (4.70) reveals that instability will set in if
either N° or F* is negative. If only F7 is negative (and N* =0), the instability is called inerrial instability.
This instability is in fact analogous to the so-called centrifugal instability of a circular balanced vortex,
first addressed by Rayleigh [1916b] (see also Drazin and Reid [1982]). If only N is negative (and
F* =0), the instability is called buoyant instability or hydrostdllc instability (see scction 4.1.2). A special
and new situation arises when N° and F° arc both posmvc i.c. when the flow is inertially stable and
buoyantly stable, but nonetheless the potential vorticity is negative due to strong baroclinicity (high
values of §7). In this case the instability is called symmetric baroclinic instability. 1t is also referred to as
“Helmbholtz instability” [Godske et al. 1957].

The orientation of the disturbance with maximum growth rate can be found from eq. (4.66) with
¢, = ¢ and A >0. We have the following special cases:

(i) Pure buoyant instability: N*<0, §7=0 and 0= F? <|N?| gives cos(2¢)=—1, or ¢ = m/2,
implying a maximum, growth rate in the vertical direction.

(i1) Pure inertial mslabﬂnty F*<0, 5 =0and 0= N° <|F?| gives cos(2¢) = 1, or ¢ =0, implying a
maximum growth rate in the horizontal direction.

If there is baroclinicity, the orientation of the disturbance with maximum growth rate lies somewhere
between the horizontal and the vertical. To find out more about this orientation, we rewrite the
instability criterion, g <0, in terms of the slope of the potential temperature surfaces and the slope of
the absolute momentum surfaces. The absolute lincar momentum (per unit mass),

M=u~-fy, (4.71)

is a conserved quantity within the framework of the model defined in this section. This can easily be
derived from the x-component of the equation of motion.

The atmosphere is usually stratified with respect to both M and 8. The stability of the atmosphere
with respect to small disturbances depends on both types of stratification. This can be understood by
means of the following considerations. The slope of surfaces of equal M, is

(a_z) __aMylay  auday-f F'
dy/amy,  aMjaz ~  oulaz L

(4.72)

*' Ertel's potential vorticity in the aimosphere is defined as e, - T8/p, i.c. as the scalar product of the absolute vorticity and the potential
temperature gradient divided by the density. It is conserved for adiabatic, inviseid processes |Ertel 1942, Pedlosky 1987).
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The slope of the background isentropes (surfaces of equal potential temperature) is

az) agsay 8
=) = L2 4.73
( (]y iy ﬂﬂ,/ﬂz Nh ( )
Remember that the subscript zero refers to the time-independent environment. In view of (4.72, 4.73)
the instability condition, ¢ < 1), can be written as,

(azlay)/(azlay)y, =1. (4.74)

In other words, the slope of the potential temperature surfaces must be greater than the slope of the
absolute momentum surfaces.

A parcel of air will conserve both M (as long as motions remain symmetric) and 6. If M, and 6,
surfaces arc congruent, conservation of both can be achieved while the parcel remains in balance with
its environment if it moves along this surface. 1f M, and 8, surfaces are not congruent, the following two
cases can be distinguished [Bennetts et al. 1988]: (a) M, surfaces steeper than 6, surfaces, (b) 8, surfaces
steeper than M, surfaces.

If a parcel of air is displaced from its equilibrium level it will try to return to a position where the
environment has exactly the same values of M and 6. There are two different restoring mechanisms.
Restoration with respect to 8 is achieved through the buoyancy force and the vertical pressure gradient
force, while restoration with respect to M is achieved through horizontally oriented forces (pressure
gradient force and Coriolis forces).

Take, for example. case (a) (fig. 4.16a). Consider a parcel of air displaced upwards and to the right
along a line at an angle to the horizontal which lies between the angles made by, respectively, the §, and
M, surfaces. Becausc 8, increases with height, the parcel becomes colder than its environment and
therefore sinks back. Since M, decreases with increasing y, the parcel comes into a region where M, is
lower. The velocity, , of the parcel is greater than the velocity, #,, of the environment. Therefore, the
environmental pressure gradient force is too weak to balance the Coriolis force on the parcel, which
implies that the net force is towards lower y in the direction of higher M,,. Hence, the parcel returns to

z} z )

{a) stable {b) unstable

Fig. 4.16. Stable (a) and unstable (b) background distributions of absolute momentum, A, and potential temperatare, 8. The equilibrium position
of the parcel teferred to in the text is indicated by a circle.
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its original position. Note that we have neglected the effect of perturbation pressure gradient forces in
this argument (for a discussion of this approximation, see Thorpe et al. [1989]).

In case (b) (fig. 4.16b) a similar displacement has the opposite effect. The parcel now enters a region
of lower potential temperature and therefore rises further. It also enters a region of higher absolute
momentum. To restore the equilibrium the parcel must move in a direction of decreasing M,,, which
implies that the original displacement is magnificd. The parcel is accelerated both in the horizontal and
in the vertical direction. This only happens if the initial displacement is oriented at an angle between 8,
surfaces and M, surfaces. Because 8, and M, surfaces in the vicinity of fronts are generally tilted at a
relatively small angle to the horizontal, the motion resulting from symmetric baroclinic instability is

slanted (see fig. 4.17). Therefore, this motion is frequently referred to as slantwise convection [e.g.,
Emanuel 1983a,b].

Fig. 4.17. Results from a numerical simulation of symmetric baroclinic instability, (a) [nitial distribution of M (solid linc) and & in the EuJI d(lxmain
3km by 300 km (contour interval in M is Sms ' and in # it is 1 K), (b) the stream function field after ¢ = 10h (contour interval 0.002m"s '), (c)
potential temperatere deviation after 10k (contour interval 0.04 K) [from Thorpe and Retunno 1989].
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If H is the vertical scale of the two-dimensional roll-like motion resulting from symmetric baroclinic
instability, two length scales can be deduced from eqs. (4.72) and (4.73). These are
, Li=|S'HYF?

L:={N*HIS’ . (4.75)

If we substitute representative values of F (10 *s '), N (10 °s ") and H (3000m) and assume
neutrality (i.c. ¢ =0, thus §* = N'F?), the two length scales become identical, i.e. 300 km. This is a
typical meso-scale length scale. In fact, symmetric baroclinic instability is the only clear meso-scale
instability. This led Emanuel [1982] to suggest a dynamical definition of the meso-scale, namely those
motions for which the Rossby number, as defined in eq. (3.28), is of order unity.

Because potential vorticity is conserved in adiabatic, inviscid flow, the instability criterion, g <0, has
some interesting consequences. The motions resulting from this instability will never relieve the
instability unless there are nonconservative processes. Therefore, nonconscrvative processes, such as
friction, must play a crucial role. This matter has been investigated by Thorpe and Rotunno [1989].

The instability criterion, ¢ <0, or (4.74) can be written in yet another way, i.c. as

Ri<(l-f 'auay) ', (4.76)

where the Richardson number, Ri, is defined as in (4.29). If the basic state has zero vorticity
(du,fay =0), it is unstable to symmetric disturbances if Ri<1. The critical Richardson number
(Ri,, = 1) for marginal (ncutral) stability is identical to the critical Richardson number derived in
section 4.1.3, for Kelvin-Helmholtz instability. However, the two cases are different. In the present
section we are considering disturbances oriented parallel to the mean wind direction, whereas in section
4.1.4 we investigated disturbances oriented perpendicular to the mean wind direction.

When the basic flow possesses positive vorticity (du,/ay < 0), the critical Richardson number
increases, implying that the flow becomes more stable to symmetric disturbances. This flow property,
which is of some importance for the dynamics of tropical cyclones, has been called “stiffness” by
Hoskins [1974] and Schubert and Hack [1982], and “‘rotational rigidity” by others [e.g.. Stern 1975].

Purely symmetric baroclinic instability is rare in the atmosphere. On the meso-scale the atmosphere
is usually statically (buoyantly) and inertially stable. However, this docs not mean that the theory
deseribed above is irrelevant. We will see later (section 6.1) that diabatic heat sources, such as latent
heat release due to condensation, or sensible heat fluxes, may trigger symmetric instability. Further-
more, even if instability does not occur, diabatic heat sources may force a steady secondary circulation.
Basically, this is duc to the fact that these heat sources upset the cxisting equilibrium of forces. A
secondary circulation is then needed to re-establish the equilibrium. This readjustment is not a trivial
process because the atmosphere does not react to forcing in a simpic way like a damped pendulum, in
the sensc that it hardly ever returns exactly to its original equilibrium state after being forced away from
this equilibrium state. Therefore, diabatic heating (or other non-conservative processes) will trigger a
slow cvolution from one equilibrium state to another equilibrium state. The process of adjusiment to
balance in a stable atmosphere is the topic of the next chapter.

5. Adjustment

In the previous chapter we were concerned with the stability and instability of certain prototype
background or large-scale states. Usually the background atmospheric stratification and flow are such
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that disturbances generated by, for example, diabatic heat sources and sinks do not amplify. This is the
same as saying that the background state is stable. Nevertheless, these nudgings and pullings, which
may be quite appreciable, do upset the balance of forces in the background state. If the forcing acts
relatively abruptly, the response is in the form of oscillations around the equilibrium. If the forcing acts
slowly and gently, the atmosphere responds with a (relatively) steady circulation leading to a gradual
(without oscillations) readjustment to a new equilibrium. In this chapter [ hope to convince the reader
that the topic of adjustment to geostrophic and hydrostatic balance is central to the understanding of
the characteristics and differences of meso-scale circulations. I hope also that this will refine the concept
of meso-scale.

3.1, Geostrophic adjustment in the shallow-water layer model

Characteristic time scales and length scales. In order to illustrate the adjustment process, let us first
consider the behaviour of a rotating shallow homogencous layer of fluid which is disturbed by mass
extraction. This will have the same effect as throwing a stone into a pond. The free surface is depressed
by the stone and surface gravity waves are excited and propagate away from the source. In a system
which is not rotating, all of the potential energy, imparted initially to the system by the stone, is radiated
away by the waves. However, in a rotating system in which potential vorticity (absolute vorticity divided
by the layer depth) is conserved, the disturbed mass field adjusts to a geostrophic equilibrium. Only a
fraction of the potential energy is radiated away. These statements can be illustrated with the results of
several numerical simulations with the shallow fluid system described in section 3.4 (see fig. 3.3b).

The configuration in these particular experiments is shown in fig. 5.1. The whole system is rotating
with an angular velocity equal to 2 = f/2. The equations of motion for the lower layer are given in
section 3.4 (egs. 3.32-3.34) in which «, =0 and h, = 0. We will extract a specified volume of mass from
the lower layer. To incorporate this effect into the model, the continuity equation becomes

ahlot=—-dhuldx+ Q, (5.1)
instead of (3.34). In this equation Q represents the volume of mass extracted per unit time and area. All
y-derivatives are assumed to be zero. [t is well known [e.g., Gill 1982, section 7.3] that the linearized
shallow water equations with Q =0 support surface gravity-inertia waves with phase-speeds, c, given by

=l +g'h, (5.2)

where a is the wave-number and / is the mean depth of the lower layer. Evidently, the effect of

Fig. 5.1. Geometry of the shallow skab-symmetric rotating layer of fluid (see text).
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rotation on the speed of these dispersive waves is more important than the cffect of stratification if

L>2m\g'hif=2m, (5.3)

where L =27/« is the wavelength. A is called the Rossby radius of deformation. This important length
scale, which was introduced in a different form in chapter 2 (eq. 2.1}, also appears when we consider the
frequency, w, of surface gravity-inertia waves, given by

w == tanghiL’ . (5.4)

It is casily deduced that the system possesses two fundamental limiting frequencies. If L = 274, the
waves are nearly inertial, with frequency

s, (5.5)
If L <2wA, then the waves become pure surface gravity waves with frequency
wh =47 hIL* . (5.6)

Note that the inertial frequency, o, is independent of the horizontal scale of the disturbance, while the
gravity wave frequency, w;, is not. This is the reason why the reaction of a rotating fluid system to
large-scale disturbances is primarily in the form of inertial waves, which means that the reaction is
noted most strongly in i and v (i.e. in the vorticity), whereas the reaction to small-scale disturbances is
primarily in the form of gravity waves, which means that it is noted most strongly in « and t (i.e. in the
divergence).

The group velocity of surface gravity inertia waves is equal to g'ha/w. If g' = 0, we are left with pure
inertia waves which apparently have zero group velocity and, therefore, do not transport energy.

Response to forcing: a simple numerical experiment. The importance of the length scale, A, and the
inertial time scale, 17w, can be illustrated with the results of some numerical integrations of eqs. (3.32,
3.33, 5.1) with v = 1 = 0 and h =2000 m initially and g’ = 1 m/s” and u, = 0. We will vary the rotation
rate, f (i.e. A), and the time scale of the mass extraction, while keeplng the total volume of mass
extracted during the integration time constant. The mass extraction term is specified as follows:

Q=0,()/r ift=r; Q=0 if1>7, (5.7)

where Q, is the total volume of mass extracted per unit area, and 7 is the time in which this is
accomplished. @, is plotted as function of x in fig. 5.2. The horizontal scale of the forcing, L, is
approximately equal to 150 km. It is very important to note here that when we extract mass, we are
simultaneously introducing potential vorticity. Potential vorticity in the hydraulic model is defined as
the absolute vorticity divided by the depth of the fluid. Because potential vorticity is materially
conserved, the fiuid will not adjust to the steady state of rest, but will adjust to geostrophic equilibrium
[Gill 1982].

Equations (3.32, 3.33, 5.1) are integrated on a grid of 240 points in the x-direction. The grid distance
is 10km and the time step is 2 min. Details of the numerical procedure can be found in van Delden
[1989a].
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Fig. 5.2. Total volume per umit mass extracted as a functicn of x.

In fig. 5.3 the height, / is plotted as a function of x every 8 min for three cases. In case (a) the
rotation rate is representative for a motionless atmosphere at mid latitudes, The length scale of the
forcing is very short compared to A. Also, the time scale of the forcing is very short compared to 1/wy..
As expected, waves are excited which propagate away at a speed approximately equal to 45 m/s.
However, some potential energy is caught in the so-called “geostrophic equilibrium mode”. This
potential energy is spread out over a distance of the order of A.

In case (b), the rotation rate (f) is increased tenfold, while all other parameters arc identical.
Therefore, A is smaller than L,. We see that, although there are dispersive grawly—mcrtm waves
propagating away from the forcmg region, an appreciable amount of balanced potential energy is left in
a relatively small area.

In case (c), which differs from case (b) only in the prescribed forcing time, 7, which is now 400 min
(>1/w), the gravity-inertia waves have such small amplitudes that they cannot be resolved by the
graphics, although the same amount of potential energy as in case (b) is left in the geostrophic mode (in
this very simple model). Therefore, in the context of this model, the time scale, 7, does not influence
the final geostrophic equilibrium. It only influences the wavelength, and therefore the amplitude, of the
waves. In the next section we will discuss a different model which permits buoyancy waves instead of
surface gravity waves. In this model the forcing frequency is indeed crucial in the energy partition
between transient and steady motions.

Some differences between interfacial gravity-inertia waves and buoyancy-inertia waves. The gravity
waves shown in fig. 5.3, which propagate along and below the interface between the two layers shown
in fig. 5.1, are fundamentally different from the buoyancy waves which were discussed in sections 4.1.2
and 4.2. This can clearly be seen when comparing the respective dispersion relations, (4.21) for
buoyancy waves and (5.6) for surface gravity waves. Buoyancy waves have frequencies depending on
the direction of propagation, or, stated the other way around, propagate in a direction determined by
the frequency. The driving force is the sum of the veriical perturbation pressure gradient force and the
buoyancy force. Surface or interfacial gravity waves in shallow fluid layers are hydrostatic. They have
frequencies which are inversely proportional to the horizontal wavelength. They propagate along and
below a discontinuity in density or potential temperature, such as the tropopause, or a subsidence
inversion. Therefore, the inertial effect of the vertical gradient in (potential) density (see section 3.2)
plays a crucial role in generating and maintaining these waves. The driving force is the horizontal
pressure gradient force. Ultimately, of course, both buoyancy waves and surface gravity waves owe
their existence to gravity. This is why they are both frequently referred to simply as gravity waves.

We must keep in mind that buoyancy waves and interfacial gravity waves are theoretical construc-
tions. The distinction between the two types of wave arises in theory, on the one hand because certain
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Fig. 5.3. The reaction of the rotating shallow layer of lluid 10 forcing (Q). with a horizontal scale L, and a time scale 7. The levet of the free surface
is shown cvery eight minutes, (a) f=0.0001s ', 7 =8 min (Ly/a=03, of =0.05); (b) f=0.000 1= gmin (Ly/A =3, 7f=05):{c) f=0.00 5 '
r=d0min (L,/A=3; 7f=24). The values of the other parameters are L, =150km. g’ =l ms * and fr = 2000 m,
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terms in the equations of motion and continuity are neglected (e.g. in the Boussinesq approximation;
see section 3.2 and 4.1.1), and on the other hand because of certain assumptions in the physics of the
problem {e.g., in the model shown in figure 5.1). In reality, however, this distinction is impossible. Real
gravity waves will probably resemble buoyancy waves when the stratification is relatively weak (N is
small), and when the horizontal wavelength is relatively small, because these are the conditions for the
validity of the Boussinesq approximation on which the theory of buoyancy waves is based (see section
4.1.1). With increasing horizontal wavelength and with increasing intensity of the stratification (e.g., in
a temperature inversion) the gravity wave in reality will probably behave more and more like an
interfacial gravity wave (horizontal propagation, less dispersion).

Inertia waves in the continuously stratified case and in the shallow water layer model aiso differ as
far as the dispersion properties are concerned. As noted earlier, surface inertia waves do not transport
cnergy because they travel horizontally. Inertia waves in the continuous model, on the other hand, may
travel vertically. The group velocity of these waves is not zero. Therefore, vertically propagating inertia
waves transport energy horizontally.

Due to the different dispersion properties of buoyancy-inertia waves compared to interfacial gravity
waves, we expect a different geostrophic adjustment process in a model which only permits the former
type of wave. Therefore it is worth discussing geostrophic adjustment in such a model. We will do this
in the following section, especially with the sea breeze in mind.

We will return to the problems involved in relating the theory of gravity waves to reality in sections
5.4 and 6.5.

5.2, Adjusiment to thermal wind balance in the shallow Boussinesq model

Linear theory of the sea breeze. A model which allows for buoyancy waves and inertia waves is the
configuration which was introduced in section 4.2. We can apply this configuration to the sea breeze
situation if we assume that the coastline is given by the line y = 0 in fig. 4.14 with the land to the right of
this line. Equation (4.59) then describes the circulation perpendicular to the coast. Assuming, for
simplicity that background baroclinicity is negligible (S = 0), this equation can be written as

9 2 2 32‘!’ b 32%[’ 8 d d@
—Vy=-F s —-N — - =—=2— — —=, 5.8
or v az” ay- 11,6, oy dt (5.8)

This is a linearized equatlon It 1s, therefore, valid only for small-amplitude motions. Assuming inertial
and static stability (F*>0, N*>0), motions will arise only as a result of a horizontal gradient in
diabatic heating. In this section we will assume that this diabatic heating is weak enough so that the
linear model remains valid.

The sea breeze is forced by horizontal gradients in diabatic heating. This forcing introduces
baroclinicity, 86/dy, which upsets thermal wind balance (4.51). This in turn sets off buoyancy-inertia
waves and a readjustment to thermal wind balance. In the new balanced state, a vertical gradient in M
(defined in eq. (4.71)) is required to balance the horizontal temperature gradient introduced by the
heating. The sea breeze is in fact a manifestation of this process of adjustment to thermal wind balance.
However, thermal wind balance is never attained because the period of the forcing is too short. This
can be understood as follows.

Let us ignore, for the moment, the actual process by which heat is transferred to the air. Following
Rotunno [1983], the diabatic heating term can simply be prescribed as a function of space and time by
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dQ/dr= @,(y, z) exp(—iwr), (5.9)

i.c. the atmosphere in the vicinity of the coast is forced at the frequency, w. Since eq. (5.8) is linear,
¥ = ,(y, z) exp(—iwt). Equation (5.8) then becomes,

Y, ; 2 VU, g 90
5 el - - 5 == 5
dy Foe)or 1.6, ay

(N’ - °)

(5.10)

The character of the solution of this equation depends on the magnitude of the {orcing frequency, w,
compared to the fundamental frequencies, F and N. If @° < N> in which case the time scale of the
forcing is much larger than the period of the possible buoyancy waves, (5.10) becomes

HZ¢I+F2_0)2 alw.l_ g an

ay' N oz I8, ay

(5.11)

This is tantamount to having made the hydrostatic approximation in (4.54). In other words, if the
system is forced with a low frequency such that ” < N°, hydrostatic balance will not be significantly
upset. The flow will be able to readjust immediately (adiabatically) to hydrostatic balance. In the case
of the sea brecze, the period of the forcing is determined by the diurnal cycle, which is 24 h. This
implies that @ =0.73x 10™* s ', which is indeed much smaller than the typical value of 10 *s™' for N,
The sea breeze may thus be regarded as a so-called hydrostatic circulation.

In the absence of background flow vorticity, ¥ = f. Since f~ 10 *s ', the inertial frequency is of the
same order of magnitude as the forcing [requency. Therelore, the sea brecze circulation is never able to
reach geostrophic equilibrium because the circulation is forced away from this equilibrium in the same
time as it takes to (re)adjust to this cquilibrium. In fact, the response of the atmosphere depends
critically on whether f (or F if the background flow possesses vorticity) is greater or less than w. There
are three types of solution to (5.11):

(1) When @’ < F°, (5.11) is elliptic. The solution is such that the motion is confined to the
neighbourhood of the forcing.

(2) When o” > F~, (5.11) is hyperbolic. The solution is oscillatory, i.e. the response to the forcing is
in the form of inertia-buoyancy waves propagating away from the source region.

(3) When « = F, the solution to (5.11) is singular. Resonance occurs. Effects of friction must be
included. These will eliminate the resonance.

Let us specify Q,(y, z) and ,(y, z) by
Q,(y,2)= Qy(y)sin(mz/H}, iy, z)= dh{y)sin(wz/H), (5.12)

with 0, >0 for y >0, Q,=0 for y=1), i.e. there is heating over land and no heating over sea. The
solution of eq. (5.11) together with (5.12) is of the form

B(y)= Aexp[-m(F — ) “yINH] for y>0,
(5.13)
g (y)=Aexp[m(F’ = &™) "yINH]  for y<0.

A is a constant determined by the boundary conditions. If w®< F* this solution tells us that the
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intensity of the circulation decays exponentially away from the coast. The e-folding distance is
proportional to

L=NHNVF -o*, (5.14)

The sea breeze circulation is confined to a distance of the order of L from the coast. L reaches a
. s 3 2 . . .

minimum when w approaches zero or when w” < F”, i.e. when geostrophic balance is assumed from the

start. The horizontal scale representative of the circulation generated by the land~sea contrast is then

given by

A= NHIF. (5.15)

The parameter, A, is again the Rossby radius of deformation. This parameter was already introduced in
chapter 2 {eq. 2.1} as the largest length scale that could be deduced from the basic parameters governing
the fiow in a rotating reference frame with constant angular velocity. It was again introduced in a
different form in the previous section. The definition of A in (5.15) differs from the definition of A in
(5.3) because of the different dispersion properties of surface gravity waves and of buoyancy waves. The
effect of the background rotation (the Coriolis force) on the flow field is to make waves evanescent
instead of propagating when w < F. The “wave” amplitude decays most rapidly with distance when the
flow is allowed to adjust perfectly to geostrophic balance. This is the case if the time scale associated
with the forcing is very large compared to the inertial time scale.

Let us substitute into (5.15) some typical values for N (10 s ™"), H (2000 m) and F (10™*s ') which
apply to the sea breeze situation. We then obtain A = 200 km. This means that the sea breeze circulation
will adjust to geostrophic balance (that is, the wind will blow paraliel to the coast) over a distance of the
order of 200 km. Further away from the coast, the effects of the temperature contrast across the coast
will hardly be noticeable. However, since w is actually not very different from F, sea breeze effects may
possibly be noticed in the form of inertia-buoyancy waves over much larger distances, certainly at lower
latitudes. In fact, at a critical latitude, ¢, where w = F (if F = f this is ¢ =30°), the character of the
solution to (5.11) changes drastically. According to eq. (5.11) no steady sea breeze is possible when
|¢| <30°. The potential energy introduced into the atmosphere by the diurnal heating is dispersed by
buoyancy-inertia waves.

Effects of friction. Although the “sea breeze” is sometimes observed as a “wave”, especially in
Australia {Clark 1989], steady sea breezes are certainly observed in the tropics [Arakawa 1969,
Schwerdtfeiger 1976, Lloyd 1990]. The effect of friction can explain this discrepancy with inviscid theory
[e.g., Walsh 1974, Dalu and Pielke 1989]. With eddy diffusion of momentum and heat included in the
equations of motion and potential temperature, Emanuel [1979, 1983c] derived the following expression
for the radius of deformation:

A=27VPr NHIF*(1+Ta "), (5.16)

where

Ta= H'Fiz"*, (5.17)
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is the so-called Taylor number and Pr is the Prandtl number defined in (4.44). This suggests that the
condition for the oscillatory solution becomes

w'>F + a'viH. (5.18)

With »=10m*/s and H = 1000 m, the second term on the rhs of (5.18) is of order of magnitude of
10 *s~". Therefore, according to (5.18) a steady sca breeze is possible at all latitudes, even at the
cquator, where F=1).

The above linear theory of the land and sca breeze ignores several important dynamical and
thermodynamical effects, which are usually important in reality. One of these effects is the interaction
with the large-scale flow perpendicular to the coast. This interaction strongly determines the onset of
the sea breeze and the formation of the sea breeze front. Another effect which is treated very crudely
here is the heat transfer from the earth’s surface to the atmosphere. Furthermore, we have said nothing
about the influence of the form of the coastline and the orography. For this and many other, especially
observational, details of the sea breeze, Atkinson’s [1981] book should be consulted.

3.3. The meso-scale as a transition regime between dynamical regimes

In this section we will try to define the meso-scale on the basis of what we have learnt in the previous
two sections. We have seen that the response of the stable atmosphere to forcing depends critically on
the duration or frequency as well as on the length scale of the forcing.

First let us look again at the dynamics in terms of the horizontal scale relative to the Rossby radius of
deformation, A, and the depth of the circulation in question. Following Ooyama [1982], we can
distinguish three dynamical regimes: a balanced regime, an unbalanced regime, and a transition regime.
Systems which fall into the balanced regime, have horizontal dimensions much greater than A. If the
forcing is not applied too abruptly, the response to forcing in this regime is non-oscillatory and
relatively weak (see fig. 5.3c). In other words, external forcing does not greatly affect the structure of
balanced systems. These systems are said to be ‘‘dynamically large” [Frank 1983]. At the other
extreme, we encounter the unbalanced regime associated with “dynamically small” motions resulting
from instabilities with horizontal scales of the order of H or smaller. Generally speaking, these
circulations are not in hydrostatic balance, and may even be the result of hydrostatic instability, in
which case the theory of geostrophic adjustment, discussed in sections 5.1 and 5.2, is not applicable.
Furthermore, the Lagrangian time scale and the coherence time scale, T, of these circulations (defined
in chapter 2) are so small that inertial forces, associated with background rotation, cannot exert a
systematic and lasting influence.

In between the balanced regime and the unbalanced regime, we have a transition regime, which can
be identified as the meso-scale. Systems falling into this regime have Lagrangian time scales large
cnough to allow for the effects due to inestial forces, and length scales small cnough to be significantly
affected by external forcing. In this regime the period or frequency of the forcing critically determines
the character of the response or the type of motion system which develops. If the forcing, w, is smaller
than F (slow forcing), a meso-scale system will adjust to, or remain in approximate geostrophic and
hydrostatic balance (provided, of course, N* is positive). This will, however, not be the case if @ > F.

In an atmosphere which is basically at rest, the inertial period 2#7/F varies from about 69 h at 10°
latitude (and more at even lower latitudes) to 15.6 h at 50° latitude and nearly 124 at the poles. The
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geostrophic adjustment process, therefore, takes nearly three days near the intertropical convergence
zone (at about 10° latitude). Cloud clusters moving along this zone, which function as meso-scale heat
sources, would have to persist for more than three days before a balanced flow would emerge. Very few
cloud clusters persist as recognizable, reasonably steady entities for longer than three days [Chang
1970]. In the light of these facts it is evident that a balanced system such as a tropical cyclone will not
emerge sponiancously out of every cloud cluster in the tropics.

The dynamics of the atmosphere can be represented in fig. 5.4 as a horizontal line indicating the
dynamical regimes as function of wavelength for a given value of the Rossby radius of deformation.
Clearly the meso-scale range of scales decreases as A decreases. When A approaches H, the meso-scale
vanishes and so does the scale separation in space between the balanced regime and the unbalanced
regime. This may in fact occur in the core of a tropical cyclone. For example, measurements in the
lower part of the core of hurricane Gloria (1985) yielded a value for the vorticity of 107>s™' [Franklin
et al. 1988]. The local Rossby radius inside such a cyclone is in the order of 10 km. Therefore, latent
heat release inside an individual cumulonimbus cloud functions as a dynamically large perturbation to
the balanced flow associated with the cyclone.

At the same time the inertial period, the time needed {for adjustment to geostrophic balance
(although in this case it is actually gradient wind adjustment, i.e. the centrifugal term is also involved),
approaches the time scale needed for adjustment to hydrostatic balance (F approaches N). The
implications of these facts can be inferred from eq. (5.10). With (5.12), this equation can be written as

d*g,/dy” —[(F* — ) I(N* = 0*))(71H" ), = {source} . (5.19)

The term on the rhs of (5.19) represents the diabatic heating term. Roughly speaking, this equation
describes the radial circutation forced by diabatic heating in a tropical cyclone in which curvature effects

L
\’,,'\v
spacinum of
1 motions in the
= mid-latitbdes
8
£ <
8 g. ! 0\'5’
OE &
<2 &
= £ 1 «
aa
Z3
2% {quasi-)
g BALANCED
- (accelerations unimportant) spactrum of
motions inside
H an intense
hurricane
-
H L

Fig. 5.4, Characteristics of the motion as u function of the horizontal wavelength, L, and the focal Rossby radius of deformation, A [bascd on
Qoyama 1982]. H is the depth of the circulation,




312 Aarnous van Delden, The dynamics of meso-scale atmospheric circulations

are neglected. The coordinate, y, must then be interpreted as the radial coordinate (see section 5.5).
The solution of (5.19) is hyperbolic, i.e. oscillatory, if the frequency of the diabatic heating o (see eq.
5.9) lies in between the buoyancy and the inertial frequencies. Therefore, the chance of buoyancy-
incrtia wave cxcitation due to diabatic heating becomes smaller as the gap between these two
frequencics narrows. Ultimately, the reaction is practically elliptic, that is, confined to the neighbour-
hood of the forcing. It is very probable that the impossibility of propagating buoyancy-inertia wave
excitation in a broad band of forcing frequencies is advantageous for the growth of the balanced
cyclone. The exact character of the response to forcing in these circumstances cannot be deduced from
thesc simple arguments and equations. In the extreme case that F> N, even an individual cumulus
cloud or simple buoyancy oscillation in the vertical falls into the balanced regime. The behaviour of
buoyancy-inertia waves in these rather bizarre circumstances is not very well understood. It is
complicated by the fact that the local incrtial frequency varics by several orders of magnitude over
radial distances of the order of 100 km (for more details sce [Willoughby 1977, 1978, 1988, Willoughby
ct al. 1984] and sections 5.5 and 6.7).

5.4, Unbalanced flow

Meso-scale gravity-inertia waves. Basically, there are two types of meso-scale circulation: (a)
unbalanced (unstable or oscillatory) circulations in which parcel accelerations are of crucial importance,
and (b) balanced (relatively steady) circulations in which parcel accelerations are negligible. Sections
5.4 and 5.5 of this chapter on adjustment will be devoted to showing some examples of these circulation
types.

In the present section we will pay attention to the first category, i.c. the unbalanced systems, which,
in view of the mathematics, could also appropriatcly be called “hyperbolic systems™. The most obvious
example of this type of system is a gravity-inertia wave. Uccellini and Koch [1987] have presented an
overview of thirteen case studies revealing the existence in the atmosphere of gravity-inertia waves,
taking the form of a singular wave of depression or a wave packet (a serics of progressive disturbances).
The wave periods ranged from 1 to 4 h and the observed horizontal wavelengths were 70-500 kms. The
perturbation pressure amplitudes measured at the carth’s surface associated with these waves were
(.2-7 hPa. The waves had a relatively long duration (3-16 wave periods) and affected very large areas
(10'-10* km?). Uccellini and Koch [1987] concluded that the generation of these waves in most cases
must be related to a jet streak (speed maximum) in the jetstream with strong vertical and horizontal
wind-shear. According to these authors, convection and topographical forcing did not seem to be a
likely source of these waves.

There are, however, a few conceptual problems in the theoretical interpretation of these waves. It is
not at all clear whether these waves are similar to interfacial (surface) waves, as discussed in section 3.1,
or more like buoyancy waves, as discussed in section 4.1.2. Because of the large wavelength, the
complete stability equation (4.14) for gravity waves in the presence of vertical wind-shear should be
applied (i.e. the shallow Boussinesq approximation is not applicable). This yields a very complicated
cigenvalue problem. The factor, nr’, in (4.14) depends on so many parameters (e.g., #,, Du,, D’u,,, 8,
D#,, D’6,), which all depend on z, that there secems no hope for a gencral solution to this equation.
Theoretical studies have been concerned almost exclusively with the much more simple Taylor-
Goldstein equation (4.20) [see Drazin and Reid 1982, Einaudi et al. 1978]. Several investigators fe.g..
Lalas and Einaudi 1976] have computed the stability properties of certain large-scale flows, such as
jetstrcams, with the help of a relatively complete stability equation, including the inertial cffect of
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vertical density variation. But, because a strong inversion was not present in their specific reference
state, the latter effect was of course unimportant. Nevertheless, according to Uccellini and Koch [1987],
the general presence of an inversion below 2 km height suggested that this feature was needed for the
maintenance of the waves. For waves with wavelengths of several hundreds of kilometres the Coriolis
force will also be important. A further question is whether the waves discussed by Uccellini and Koch
[1987] are the product of an instability of a specific large-scale balanced state, or the transient response
in a stable atmosphere to certain relatively rapid changes in the large-scale state. Due to the difficulty of
defining a large-scale steady state, it is very difficult, if not impossible, to rigorously separate these two
processes. So far there have been no reports of attempts to make numerical simulations of these
large-scale gravity waves and their generation (at least to the author’s knowledge). Thus, we still seem
to be very unacquainted with large-scale transient gravity waves. More about this subject will be said in
section 6.5 on mountain waves.

Another example of an unbalanced circulation system is the so-called morning glory, the name given
to the spectacular low roll clouds that occur early in the morning, most frequently towards the end of
the dry season, in the southern part of the Gulf of Carpentaria region of northern Australia [Smith
1988] (see Simpson [1987] for some nice photographs). They seem to be associated with solitary wave
disturbances at the leading edge of an undular bore (a bore consisting of a series of smooth waves at the
leading edge) that propagates on a low-level maritime stable layer at a speed of about 10 ms ™' [Christie
1989] (see figure 5.5). Morning glory-like phenomena have also been observed in Oklahoma [Haase and
Smith 1984] and in Germany [Haase 1991]. Crook and Miller [1985] and Rottman and Simpson [1989]
have suggested that the morning glory is generated by some type of gravity current moving into an
existing inversion or stable layer. The gravity current can be characterized as a current of relatively

—i—

=1 hour—e=|

Fig. 5.5. Surface micropressure records corresponding to amplitude-ordered morning-glory solitary-wave disturbances at Edward River on the
castern side of the Gulf of Carpentatia. Onset times, source azimuths and propagation speeds are as follows: (a) 2152 EST 15 September 1983, 28°,
59ms ' (b) 2120 EST I8 September 1983, 31", 63ms ' () 2117 EST 24 September 1983, 35°, 7.2ms ' (1 mb = 1 hPa) {Christie 198Y]
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heavy fluid intruding into a layer with a lower mean density under the influence of gravity. The force
driving the current is, of course, the horizontal pressure gradient, just as in the case of a surface gravity
wave. However, the gravity current can be distinguished from the surface gravity wave by the fact that it
mainly transports mass, while the gravity wave mainly transports energy. Sca brecze fronts [e.g., Kraus
et al. 1990] and cold thunderstorm outflows [e.g., Kessler 1985] are typical examples of atmospheric
gravity currents. Rottman and Simpson [1988] conducted laboratory experiments to show how a gravity
current can generate a bore in the stable layer ahcad. The experiments compared reasonably well with
observations of atmospheric bores generated by thunderstorm outflows and sea breeze fronts. 1t must be
stressed that the scale of these phenomena is much smaller than that of the wave phenomena cited by
Uccellini and Koch [1987).

Other examples of atmospheric waves are mountain lec-waves and convection waves. The names
given to these waves obviously refer to the generating mechanism. We will defer the discussion of
lee-waves to section 6.5. Convection waves [e.g., Erickson and Whitney 1973] are excited by convection
currents bumping into a stable layer aloft. They were discovered by glider pilots as so-called thermal
waves. With the help of aircraft observations Keuttner et al. [1987] found these waves to have the
following characteristics: horizontal wavelength: 5-15 km; vertical motion amplitude: 1-3m s '; verti-
cal wind-shear: 0.003-0.01s ': vertical extent of the wave system: >9 km. Thercfore, these waves are
in effect buoyancy waves, possibly modified by background wind-shear [see also Bradbury 1990].

Convection. The meso-scale gravity waves, the morning glory, transient mountain lee-waves and
convection waves arc all unbalanced oscillatory types of motion occurring in a stable background
atmosphere. They owe their existence to some kind of short scale (in time and space) external forcing.
Another class of motion systems occurs when the background state is unstable. Unbalanced motion
systems may then arise spontancously. For example, convection currents are the result of an unstable
balance of forces in the vertical direction. The deviations from this balance are governed by eq. (3.19a),
which in the absence of the Coriolis force and friction can be written as

wdw/dz=—¢,all'laz + Bg . (5.20)

Assuming that the pressure in a parcel with buoyancy, B, adjusts to the environmental pressure at all
levels {i.e. [1" =0}), it can easily be deduced that a parcel starting its ascent at a level z, with vertical
velocity w,, will have a velocity w, at a height z, given by

=w; +2 X CAPE, (5.21)

where the convective available potential energy (CAPE) is defined by

CAPE = gf Bd:z. (5.22)

ol
The magnitude of CAPE can be as Iar;:,c as 4500 m” s, but in deep convective conditions it generally
ranges between 1500 and 2500 m® s~ * [Weisman and Klemp 1986}. This includes the effect on B of the

release of latent heat due to condensation or freezing (see section 6.1). A value of 2500 m* s ~* would,
according to (5.21), translate to a maximum possible updraught of about 70m s "if w, = 0. Such strong
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a. Cumulus cloud

1 km

50 b. Supercell thundarstorm

Fig. 5.6. The vertical motion measured (rom an acroplane in (a) o fair-weather cumulus cloud, 1.5 km deep, over a track about 250 m below the
cloud op [from Telford and Warner 1962, and (b) a supercell thunderstorm aver a truck about 6000 m above the ground |Musil et al. 1986].
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Fig. 5.7. Hoeker's [1960) photogrammetric analysis of the 1975 Dallas tornado showing (a) tangential and (b) vertical velocities in ms™" [from
Davics-Jones 1985].
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updraughts are never observed because of friction and water loading (see section 6.2). However,
sometimes updraught intensitics in thunderstorms come surprisingly close to this value, as can be seen
in fig. 5.6b [Browning 1986]. Maximum horizontal wind speeds in hurricanes arc of the same order of
magnitude! Updraughts in ordinary non-precipitating cumulus clouds are usually of the order of 3m's [
(sec fig. 5.6a). Updraughts of the order of 50ms ' arc also observed at heights of about 100 m in
tornadoes (sce fig. 5.7). The accelerations associated with these intense updraughts can be deduced
from the lhs of (5.20). For the cumulus cloud, the thunderstorm cloud and the tornado depicted in fig.
5.6a, fig. 5.6b and fig. 5.7, respectively, we have: cumulus cloud: dw/dr=0.0l ms 2<g; thunder-
storm: dw/dt =0.25ms < g; tornado: dw/dr=25ms ~ > g. Since pressure perturbations (p’ or 1’)
in cumulus clouds are small [LeMone et al. 1988a,b| (sce section 4.1.4), the vertical accelerations found
in these clouds are solely due to the buoyancy force. In fact, a rather small potential temperature
perturbation, &', of about (.3 K is needed to get a vertical acceleration of 0.0l m s * If accelerations in
thunderstorms and tornadoes were only due to buoyancy, this would require a potential temperature
perturbation, §', of about 7.5 K for the thunderstorm cloud and about 750 K (!) for the tornado. Excess
potential temperatures in clouds much greater than 10K are hardly ever observed. Therefore, the
vertical acceleration in a tornado must be due principally to a vertical pressure gradient (sce scction
6.3).

3.5. Balunced flow

We have seen that forced and sclf-excited unbalanced flows are characterized by relatively large
accclerations. In the case of forced flows. these accelerations are due to the fact that the forcing is
abrupt refative to the time required for readjustment to balance (see fig. 5.3a.b). If, on the other hand,
the forcing is relatively slow, the structure can adjust continuously to a new state of balance. The result
is a system which evolves through a succession of balanced states without experiencing oscillations (sce
fig. 5.3c). We will see in this section that many theorics of slowly evolving systems in which
accelerations are negligible assume that the forcing is felt instantly at its full strength in all parts of
space. This implies that the system remains in approximate balance at all times. Due to this, these
systems are frequently described by differential equations of the elliptic type. Therefore, in view of the
mathematics, we could call these weather systems elliptic systems.

Forced secondary circulations in balanced baroclinic zones ( fronts). In order to obtain more insight
into the dynamics of forced balanced flows, let us return to a situation similar to that depicted in fig.
4.14. We will follow the pioneering theoretical studies of fronts by Sawyer [1956] and Eliassen
[1959, 1962]. Sawyer investigated the situation shown in fig. 5.8. On a straight geostrophic current,
U(y.z,1). similar to the basic current u,(y,z) investigated in section (4.2), he superposed a
geostrophic (balanced) deformation field (following an idea of Bergeron [1928]) and an ageostrophic
(unbalanced) symmetric (x-independent) circulation denoted by a subscript a. Thus, the velocity field is
given by the following expression:

v={U(y, z,0)+ Av, = Ay + u,(y, 2.0), w (3, 2, 1)} . (5.23)
Note that U depends on time. The deformation field is represeated by the terms containing the constant

factor A. It can casily be scen that this deformation field is non-divergent and irrotational. The
along-front velocity conforms with geostrophy at all times. This approximation is now called the
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g (y.z.1)

X

Fig. 5.8. The secondary (vertical) circulation forced by the deformation field in a frontal region The dash-dotied lines represent isentropes in the
planc z =0. Also shown in this plane is the deformation field (the arraws), U is the geostrophic flow (sce the text}

geostrophic momentum approximation ot semi-geostrophic approximation [Eliassen 1948, Hoskins
1975]. It is valid as long as the term v dv/dy and w dv/az can be neglected compared to the pressure
gradient term and the Coriolis term in the y-component of the momentum cquation.

The approximate cquations of motion {neglecting friction) and the temperature cquation are,
respectively (see eqgs. 3.17, 3.19),

duldt=-6_all"lax+ fv, (5.24a)
dv/di=—4_all'lay - fu,, (5.24b)
dwidi=—6_all'laz +(8'0,)g. (5.24c)
de'/de=(1/11,)dQ/dt . (5.24d)

Here we have made the same approximations as in section 4.2. That is, we have again split the potential
temperature and the Exner function into a constant mean value, denoted by the subscript m and a
perturbation, denoted by a prime (the Boussinesq approximation). We have neglected the potential
temperature perturbation, 8, in the pressure gradient terms and we have assumed that fI= Il in the
potential temperature equation. Sawyer assumed that the temperature field remains independent of the
along-front coordinate, x. The geostrophic momentum approximation implies that

8 all'lay + fU + fAx=0. (5.25)
The deformation field is also geostrophic. Therefore,

8_all'/ox + fAy=0. (5.26)
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In addition to this Sawyer assumed that the flow remains in hydrostatic balance. In view of (5.24c) this
leads to

0, 0ll'10z=(0'18,)¢ . (5.27)
Relations (5.25) and (5.27) imply thermal wind balance, i.c.

JoMidz+(gio,)oe'lay=0, (5.28)
where the linear absolute momentum associated with the current U is defined as

M=U-fy. (5.29)
The equation for M can be derived from (5.24a) and (5.26). The result is

aMiot+u, aM/lay +w, aM/az = - A(U + Ax) + Ay alUlay . (5.30)

1t can easily be shown that the second term on the right-hand side of {5.30) functions as a source of total
absolute lincar momentum. The cross-frontal peostrophic velocity ficld implies an along-front pressure
gradient which acts as a source of momentum. Differentiating (5.28) locally with respect to time and
using cq. (5.30) and ¢q. (5.24d) (in which we neglect the along-front temperature gradient), we obtain
an cquation for the cross frontal circulation as follows:

3 R - Lo 2Ag o’ g 0 (dQ)
-8 — - —_=as " a8 Y
£ Az’ e ax az " ay" 6. oy 1.6 ay\di/° {5.31)
where
F=—faMlay, S =(g/6,)08'1ay, N*=(g/6,)06' (5.32)

(compare these definitions with (4.60-4.62)). The stream function ¢ is defined in terms of v, and w,_ by
equations analogous to (4.57). This equation describes the secondary circulation which is needed to
maintain a current in geostrophic and hydrostatic balance in the presence of heat sources and sources of
momentum due to confluent or diffluent advection. The equation is frequently referred to as the
Lliassen-Sawyer equation. Equation (5.31) together with appropriate boundary conditions (e.g. ¢ =10
on a closed curve surrounding the frontal zone) has a unique solution if it is of the elliptic type, i.c. if
the quantity, ¢ = F°N° — 8> 0. Note that this criterion coincides with the second criterion in (4.70)
for the stability of a baroclinic current with respect to symmetric disturbances. The above criterion is
ncarly always satisfied in the atmosphere. This ensures that transverse circulations will only arise in
response to the forcing terms on the right-hand side of eq. {5.31). We may then say that we are dealing
with a balanced weather system, which is continuously disturbed by sources of momentum and heat.
The geostrophic momentum approximation is valid as long as the forcing is not too abrupt.

Let us, for the moment, neglect the cffect of diabatic heating and investigate the effect of the
so-called geostrophic forcing due to the geostrophic deformation field. If A >0, the deformation ficid
has the cffect of intensifying the horizontal temperature contrast across the front. With 36/9y <0 (see
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fig. 5.8), the forcing term on the right-hand side of (5.31) becomes positive. It can be shown [e.g.,
Eliassen 1962, 1990] that the solution of (5.31) with a positive term on the right-hand side gives an
ageostrophic circulation which is thermodynamically direct, i.c. with potentially warm air rising and
potentially cold air sinking. This circulation is drawn in fig. 5.9. Obviously, it will tend to weaken the
front (i.e. have a frontolytic effect). However, in areas (indicated in fig. 5.9 by the letiers A and B)
where the forced circulation induces convergence, gradients of # and M will tend to increase. At the
ground a front-parallel jet will thus be formed towards the warm side of the front, whereas higher up in
the troposphere a jet will be formed on the cold side of the front. The gradients associated with these
jets will tend to become stronger as time progresses [e.g., Garner 1989] until a balanced state is reached
in which frontolysis due to turbulent diffusion counteracts frontogenesis due to large scale deformation
[e.g., Williams 1974].

Beside confluent motion and convergence there are ot course many other processes which may
contribute to frontogenesis (for a recent paper on this subject see, e.g., {Thorpe 1990]). The above
theory is relatively crude due to the restriction to two-dimensions. Hoskins and Draghici [1977] and
recently Davies-Jones {1991] have extended it to three dimensions. We will see in section 6.4 that the
situation becomes quite complicated when the temperature varies across the front, or when the front is
not straight. We will not go into further details here. There is a huge body of literature on the subject
{e.g., Hoskins 1982, Keyser and Shapiro 1986, Newton and Holopainen 1990).

Tropical cyclones. Several years prior to the investigation of fronts by Sawyer, Eliassen [1952] had
alrcady derived and analysed an equation similar to (5.31) for the steady transverse (radial) circulation
{also called secondary circulation) in a balanced circular symmetric vortex such as a tropical cyclone.
Figure 5.10 shows a cross section running through the axis of a typical tropical cyclone. The secondary
circulation extends to a radius of about 900 km, although it is by far the most intense for r < 150 km,
where the greatest radial pressure gradients are observed. Not shown is the much weaker but very
important thermally indirect branch of the sccondary circulation inside the eye. Frequently, the high
cloud shield does not extend as far out as shown in this figure. The secondary circulation is not
self-excited due to some kind of hydrodynamic instability, but is forced by heat and momentum sources
[Shapiro and Willoughby 1982] in the same way as the cross-frontal circulation described carlier in this
section. The forcing upsets the existing state of balance, i.c. gradient wind and hydrostatic balance,
which may be expressed in cylindrical coordinates as

wr+ fu=0alliar, (5.33)

cold

-
Y
Fig. 5.9. The potential temperature distribution {isentropes: solid linesy and absolute momentum distnbution {dashed lines) across a frontal region
in the presence of o geostrophically forced secondary circulation [based on figure 9.3 in Eliassen 1990].
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Fig. 3.10. Seeondary circulation and surface pressure in a hurricane [based on o schematic picture in Elassen and Kleinschmidy 1957].

alllaz=~glt . (5.34)

where u is now the tangential component of the velocity, The secondary circulation is required to
maintain these equilibria. Note that there is an inconsistency here because a radial circulation is
incompatible with exact gradient wind balance. If v#0 and w#0, two extra terms, —v dv/ar and
—=w dv/dz, are required on the lhs of (5.33). If v and w are small, however, these terms can be shown
to be of very little importance in the balance. This is the gradient wind balance version of the
geostrophic momentum approximation.

The gradient wind relation (5.33) is observed to be a good representation of the radial balance of
forces in relatively intense hurricanes [Willoughby 1979, 1990b, Sheets 1982, Jorgensen 1984]. As an
cxample, fig. 5.11 shows a comparison of the observed azimuthal average tangential wind and the
gradient wind computed from the observed azimuthal average isobaric height at flight level in hurricane
Alicia (1983) (see also figs. 3.2 and 5.12). The validity of gradient wind balance at this level is
impressive® .

The validity of hydrostatic balance in a hurricane, on the other side, is not a trivial matter. It is,
nevertheless, an important assumption in the theory of tropical cyclone growth because it allows for a
clear distinction between the cyclone mode of motion and cumulus convection (see section 6.7). The
clouds observed in the eye-wall of a tropical cyclone have the same dimensions as thunderstorm clouds
and produce enormous amounts of rain. Frank [1977] estimated that the average rainfall within the
inner 200 km radius of a typhoon (the name given to tropical cyclones occurring around the Philippines
and Japan) averages about 100 mm per day. Nevertheless, vertical velocities observed in these clouds
are very weak compared to those observed in a typical thunderstorm cloud (see figs. 5.6 and 5.12). The

*"There is some controversy on the degree of balance in @ hurricane and its implications |see Gray 1991, Willoughby 1991]. Here we only intend
10 show, following Willoughby [1990b. 1991]. that gradient wind balance is a reasonable assumption in a theory of tropical cyclone dynamics.
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Fig. 5.11. The time-mean axisymmetric swirling (tangential} wind (solid fine) and the mean gradient wind (crosses) at the 850 Py pressure level
measured in hurricane Alicia in the ume interval 11:59 10 1818 UT. 17 August 1983 [from Willoughby 19%1k].

most intense updraughts (w=10m/s) are found at altitudes above 10km coinciding with the area
where the highest outflow velocities (v = 6-9 m/s} are observed [Marks and Houze 1987]. These high
velocities are indicative of small-scale hydrostatic or symmetric baroclinic instability. Elsewhere the
radial and vertical velocities are usually a factor 10 smailer than the vertical velocities in clouds with
similar dimensions in thunderstorms. This suggests that the clouds in an intensc tropical cyclone are not
principally the result of hydrostatic instability (or CAPE; sce eq. 5.22), but are the visual manifestation
of the vertical component of the forced secondary circulation. We will elaborate further on the exact
nature of this secondary circulation and the way in which it is forced in section 6.7. Here we only want
to show that hydrostatic balance is an acceptable approximation in a theory of tropical cyclones.

The equations governing the primary (azimuthal) and secondary circulations in an axisymmetric
balanced tropical cyclone are given by (5.33,5.34), in addition to

dulfot+vaular+wanlaz+o(f+u/r)=0, (5.35)
a(rp,u)far+ d(rp,w)/oz=0, (5.36)
06/dt+ v agfar+wadloz=(1/11)dQ/dt, (5.37)

where v is the radial fiow (positive outwards) and we have assumed that ap,/8z = —gp,/c; (see section

3.2, below eq. (3.24a)). From gradient wind balance (5.33) and hydrostatic balance (5.34) we can

deduce that the cyclone must be in thermal wind balance according to
Quir+f)outaz=(gi0)o0lar+ (u/0)(uir+ f)adloz . (5.38)

Because g > u(u/r+ f) and 8/3r~ 36/9z inside a tropical cyclone, the second term on the rhs can be
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Fig. 5.12. Vertical velocity in ms " in husricane Alicia (1983} denved from airborne Doppler radar along two radial flight legs (see fig. 3.2) through
the eye. The vertical velocity cannot be measured inside the clear eye Jfrom Marks and Houze 1987].

neglected. We sce that the high temperatures in the centre of the cyclone (fig. 5.13), which make
a8/dr <0, are directly related to the decrease of u with height via the thermal wind relationship. The
fact that this is observed in all mature tropical cyclones confirms the hypothesis that the tropical cyclone
is close to hydrostatic and gradient wind balance. The decrease of the tangential wind speed with height
entails a decrease of the inertial stability with height. We will see in section 6.7 that this promotes the
intensification of the cyclone.

Differentiating (5.38) with respect to time and using (5.35-5.37) yields a diagnostic equation for the
sccondary circulation similar to the slab-symmetric case (eq. 5.31). The general form of this equation is
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Fig. 5.13. Vertical-radial cross scction of (1) azimuthal or tangential winds (in knots, 1 knot=0.5ms""') and (b) temperature anomaly (K) in
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Adlaz* +2B o ylaraz + Ca'ylar' + Daglar+ Eaglaz + G =0, (5.39)
where ¢ is the streamfunction, defined in terms of w and v as
w=(1/p,r)aglar, v=—(1/pyr)dfioz (5.40)

to satisfy (5.36). In eq. (3.39), A is related to the inertial stability of the vortex: r ' 9M:/ar =
IM L./r* [s*], where M_is the angular momentum per unit mass, defined for an axisymmetric vortex
as

M =ur+}fr, (5.41)

A is also called the “Rayleigh discriminant” (e.g., Drazin and Reid 1981). B is related to the
baroclinicity of the vortex, 88/dr, C is related to the static stability, d6/dz, and G is related to the
forcing (diabatic heating). The parameters D and E are also functions of the distributions of # and u in
the cyclone.

Equation (5.39) was derived first by Eliassen [1952] with pressure as a vertical coordinate instead of
z [see also Yanai 1964]. A steady solution exists only when the distributions of 8 and u are such that the
vortex is statically, inertially and baroclinically stable. This is the same as saying that eq. (5.39) must be
elliptic [Eliassen 1952]. This is the case if AC = B* >0 (compare this with (4.70) and (5.21)). Estoque
[1962] and Rosenthal [1963) and many others subsequently attempted to find numerical solutions of
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{5.39) for distribution of u and # representative of tropical cyclones. Later this cquation was used to
diagnose the secondary circulation in a numerical model of a balanced axisymmetric tropical cyclone
|Ooyama 1969, Sundquist 1970]. These models integrated in time the cquation for the tangential
velocity (5.35) and used eq. (5.39) to diagnose the secondary circulation needed to preserve balance in
the presence of processes such as diabatic heating and friction. Such models are numerically very stable
because they do not permit unbalanced motions such as gravity waves. In the carly days of numerical
modelling, this was very desirable because computer power did not allow for the high degree of
resolution required to simulate gravity waves. In spite of this. the models gave a very faithful picture of
the growth of a weak balanced vortex into a mature tropical cyclone, demonstrating, once again, that

2t kL S - o I L Dl

Fig. 5.14. Satellite (TIROS-N. infrared) phetograph of a polar low: {a) in it formative stage over the Norwegian sea on 3§ December 1978,
14 : 31 UT: (b) making landiall at the Dutch coast an 2 January 1979, 14: 01 UT. Courtesy of the University of Dundee.
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the tropical cyclone is indeed a balanced structure which evolves slowly from one balanced state to the
other. Naturally, the models could not simulate the genesis of a vortex.

An example of a balanced meso-scale vortex. Another example of a balanced meso-scale weather
system is the polar low [Rasmussen and Lystad 1987, Twitchell et al. 1989], which may be considered,
with some reservations, as the high-latitude version of the tropical cyclone (see Emanuel and Rotunno
1989, Rasmussen 1989]. In order to facilitate a comparison between the different meso-scale circula-
tions, we will discuss shortly a polar low occurring over the same area (The Netherlands and
surroundings) as the other meso-scale circulations discussed in this review (the sea breeze and the
thunderstorm; see chapter 2 and section 6.4). Figure 5.14 displays two satellite images of a polar low.
The first image (fig. 5.14a) was taken on 30 December, 1978. At that time the polar low was forming
over the Norwegian sea (in the lee of the Norwegian mountains) in an area of large-scale horizontal
convergence (for a discussion of the rather unique large-scale weather pattern, see Kurz [1979]). Cold

Fig. 5.14. {cont))
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continental air was flowing around the southern tip of Norway and colliding with slightly warmer air
coming from the northcast. The Norwegian mountains, large-scale baroclinicity, intense sensible heating
and latent heat release were probably all playing a role in the formation of the polar low. On 1 January
1979, the large-scale conditions changed and the polar low was steered into the North Sea by the
large-scale flow. After travelling towards the south cast, with its centrc remaining about 50 to 100 km to
the east of the British coast, it finally made landfall at the Dutch coast at approximatcly 14 UT on 2
January 1979 (sce fig. 5.14b). Figure 5.15a shows a map of the weather at the surface at this time. The
minimum surface pressure measured near the centre of the cyclone at 14 UT was 1007.5 hPa. Windgusts
of up to 31 ms ' were measured along the coast to the southwest of the centre. Showers with thunder,
rain, hail and snow were observed in the southwest quadrant of the cyclone, while a band of continuous
snowfall was observed principally in the northeast (sce fig. 5.14b). This band is a result of baroclinicity,
i.e. relatively warm air is forced to glide up over the cold continental air ncar the earth’s surface. A
clear arca, resembling an eye, with a diameter of about 60 km, can be obscrved in the centre of the
cyclone. The situation at the ground four hours later is shown in fig. 5.15b. The cyclone has travelled
approximately 200 km in a southeasterly direction, while the central surface pressure has risen by about

| ———]
100 km (a)

Fig. 5.15. Surface weather maps of January 2, 1979 at (a) 14 UT, and (b) 18 UT. Isobars are shown by solid lines with values indicated in hPa. A dot
marks the position of 3 weather station as well as the end point of the wind vector. The barhs attached to the wind vector indicate the 10 min mean
windspeed, ff, measured at a height of 10m: no barh corresponds w ff< 2.5ms ' one barb corresponds o 2.5= ff<35ms ' and one further barb
is added for every Sms ', Numbers in bold indicate the maximum wind speed (in ms ') measured during the previous hour. Numbers in italics
indicate the temperature at a height of 1.5m, Dark shading in (b} indicates areas where the height of the carth’s surface 15 greater than JKm.
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5 hPa. The system has weakened, presumably bacause it has lost its supply of energy, namely the
sensible heat and the latent heat from the sea. An interesting feature is the pocket of relatively warm air
in the centre of the cyclone. Note also that the horizontal dimension of this cyclone and the
accompanying cloudcluster is of the same order of magnitude as the thunderstorm complex shown in
figs. 2.9 and 2.11.

Fronts, tropical cyclones and polar lows are good examples of a balanced meso-scale weather system.
The evolution of these systems is governed by small departures from the state of balance. These
departures are the result of relatively weak forcing acting on a relatively large time-scale. Sometimes
the qualifications, “‘semi-geostrophic” (when the geostrophic momentum approximation is made, e.g.,
Hoskins [1973]) or “quasi-static” [Eliassen 1948], or *‘quasi-hydrostatic” [Orlanski 1981], or in general,
“quasi-equilibrium™ [Cullen et al. 1987], are given to these circulations to emphasize the fact that the
departures from balance, however small, are important to the dynamics of these circulations. In this
review we will stick to the term *‘balanced”, even though this does not necessarily mean that there is
exact balance. As is also stated by Garner [1991], the term “balanced” then refers to the exclusion of
gravity-inertia waves and convection from the theory.

6. Forcing

Now that we have a general understanding of the instabilities and the adjustment processes that are
possible on a local scale (neglecting the sphericity of the earth) in the atmosphere, we can go into more
detail on the specific way in which these instabilities and adjustment processes can be triggered or
forced. Perhaps the most important forcing mechanism is diabatic heating or cooling. This may be due
to condensation of water vapour or freezing of liquid water, absorption of solar radiation, emission of
infrared radiation or fluxes of sensible heat from the earth’s surface. Another important forcing agent is
topography (such as mountains, hills, coastlines and valleys). The large-scale background flow can also
act as forcing agent, especially when this flow possesses vertical wind-shear and/or acts frontogeneti-
cally.

We will start with latent heat release due to condensation. We will describe how this process affects
static buoyant instability and baroclinic symmetric instability. In section 6.2 we will discuss some effects
of rainwater loading and evaporation of raindrops on the dynamics of convection currents. Next, we
will treat the role played by background vertical wind-shear in sustaining severe thunderstorms and also
the role played by upper level jet streaks propagating along large-scale fronts in promoting these
storms.

Subsequently we will turn to topography. We will discuss, relatively briefly, the dynamical effect of
mountains and valleys on the flow, illustrating the confusion that still exists about the nature of gravity
waves in the atmosphere. After that we will list the wide variety of ways in which friction influences
meso-scale circulations. Finally, we will return to the versatile role played by diabatic heating in
generating meso-scale circulations. The ideal example to illustrate the ways in which diabatic heating
effects the flow in the atmosphere is the tropical cyclone. In order to explain the growth of a tropical
cyclone we must address the role of diabatic heating as a source of pressure perturbations and as a
source of potential vorticity, as well as a source of buoyancy.
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6.1. Latent heat release and conditional instability

Curmudus convection. The effect of latent heat release duc to condensation of water vapour on the
flow has been investigated by a large number of authors since the American metcorologist Espy
recognized is as an important form of energy in storms in the nineteenth century [Kutzbach 1979]. In
this section we will discuss the role of latent heat release as a source of buoyancy.

Consider a saturated atmosphere in which there is rising and falling motion. Condensation and, thus,
latent heat release will only take place in the updraught. It can be shown that the latent heat released is
closely proportional to the upward velocity, w [Holton 1979]. Hence, the potential temperature equation
(3.17) in these circumstances becomes

do'/di= —(6,/g)N*w ifw<0;  do'/di=—(8,/g)N,w il w>0. (6.1)

Here we have assumed that € =8,(z) + 8 (and likewise for f1). N, is the moist Brunt-Viisild
frequency, defined as

Ni =N+ (gLigdl)ar oz, (6.2)

where L is the latent heat of condensation and r_ is the saturated mixing ratio of water vapour. To
arrive at this expression, we have assumed that the change in #, following the motion is mainly due to
ascent [see Holton 1979]. There are more accurate definitions of N, available in the literature [Durran
and Kliemp 1982], but the present definition is sufficiently accurate to illustrate the principle influence of
moisture on atmospheric circulations,

Because dr oz <0, Nf“ may casily become negative, even if N* is positive but not too large. In these
circumstances the atmosphere is statistically or buoyantly unstable only with respect to saturated
upward motion, This is called conditional or latent instability. The word “conditional” or “latent” refers
to the condition that the air must be saturated. Usually an ascending air parcel is not saturated until a
so-called lifting condensation level is reached. Air parcels must overcome a kind of potential barrier
before the latent instability can be released. This has some interesting consequences for the intensity of
atmospheric convection |Oerlemans 1983].

The asymmetry between the stability properties of the saturated updraught and the dry downdraught
will obviously have an important influcnce on the flow pattern of convection in a conditionally unstable
atmosphere. This has been investigated theoretically and numerically by many authors [e.g., Bjerknes
1938, Lilly 1960, Kuo 1961, 1965a, Asai and Kasahara 1967, Yamasaki 1974, Asai and Nakasuji 1977,
van Delden 1985, Oerlemans 1986, Bretherton 1987, Chlond 1988). These studies were concerned with
aspects of moist convection, such as the preferred aspect ratio and plan-form of the convection cells and
the preferred radius of the updraught. In order to highlight the most important features of these
studies, we will follow an argument put forward by Bjerknes [1938] (sce also Godske et al. [1957] and
Charney [1973]). This argument is based on the so-called slice method referred to carlier in the
introduction to chapter 4. We will assume for the moment that all the condensed water in the
atmosphere falls out immediately.

Let us schematically denote the area of rising motion at a fixed level by A ,, and the area of sinking
motion by A . Let the typical upward displacement be /, and a concomitant downward displacement
be { . From mass continuity /,A, =/ A _, assuming that the density is constant throughout the fluid.
The work per unit mass, W_, required to overcome the buoyancy forces in the downward displacement
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is given by W_=IN>A_ (see section 4.1.3, eqs. (4.26, 4.30)). The work per unit mass by the
buoyancy forces in the upward displacement is W, = IN212 4 .. [nstability in a conditionally unstable
atmosphere (N;, <0, N*>0) will occur only when |W,|>|W._|, i.c. when

INLIA_>[N°|a, (6.3)

where we have used mass continuity. This is Bjerknes’ [1938] instability condition for moist convection.
The instability will be most intense when A,/A _ approaches zero. This implies that updraughts in a
conditionally unstable atmosphere will preferably be very narrow, whereas downdraughts will be very
broad. Turbulent diffusion or entrainment will limit the updraught area A , to a finite value. Theoretical
and numerical studies due to Kuo [1965a], Yamasaki [1974] and van Delden [1985] have revealed that
the radius of the updraughts attains a steady value approximately equal to the depth of the conditionally
unstable layer. The downdraught radius, or spacing of the clouds, on the other hand, may grow to very
large values, differing greatly from one updraught to the other [Chlond 1988]. Figure 6.1 shows how a
field of updraughts emerges from the random forcing in a two-dimensional model of moist convection.
It is worth noting that buoyancy wave propagation is possible in the unsaturated area [Bretherton and
Smolarkiewicz 1989, Huang 1990]. This makes atmospheric convection much more complicated than
ordinary laboratory Rayleigh~Bénard convection (see section 4.1.2).

By analogy with dry adiabatic motion, where potential temperature is constant following the motion,
we can define an equivalent potential temperature, 6,, which is constant following saturated ascent. To
this end, we simply define
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Fig. 6.1. Time series of the vertical velocity as i function of x (in units of #) (see fig. 4.3) in the middle of a conditionatly unsiable layer according to
a numerical model of moist convection between wo horizontal. perfectly conducting, stress-free boundaries [van Delden 1985]. (The time umit is
cqual 1o kefgati')
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No=18/(8.),) 8(6.)/ 0z , (6.4)
which implies, using (6.2) and (4.19), that

8, = # exp(Lr/oll). (6.5)

It should be noted that there are a lot of subtleties involved in the definition and derivation of 6, and
N, which have been bypassed here for the sake of concisencss (details can be found in [Durran and
Klemp 1982])). The criterion for static instability of a saturated updraught (independent of the
cnvironment) is

019z <. (6.6)

Conditional symmetric baroclinic instability; rainbands. In a balanced saturated frontal zone, where
the above criterion is not satisfied, we may expect that symmetric baroclinic instability is possible if
cquivalent potential temperature surfaces are steeper than momentum surfaces (sec section 4.2). Warm
saturated air contains more moisture than cold saturated air. Therefore, the horizontal gradient in 8, will
be larger than the horizontal gradient in ¢ Thus, a moist atmosphere may become baroclinically
unstable with respect to symmetric perturbations carlier than a dry atmosphere. Bennetts and Hoskins
[1979] called this process “conditional symmetric instability”. They invoked this instability mechanism to
explain the formation of frontal rainbands c.g., Browning et al. 1973]. In such an unstable frontal zone,
an air parcel travels along a surface of constant (8,), conserving absolute momentum (see cq. 4.71). The
Coriolis force acting on the parcel in the transverse ( ¥) direction (see fig. 4.14) will immediately exceed
the environmental pressure gradient. The parcel will therefore accelerate further away from the
cquilibrium. Basically, the instability may be described as inertial instability along surfaces of constant
f,.

Since the pionecring paper by Bennetts and Hoskins [1979], after preparatory work by notably
Sawyer [1956], Eliassen [1959,1962] and Hoskins [1974], several authors have tried to simulate
numerically the circulation resulting from conditional symmetric instability. Onc notable example of
such a simulation is described by Saitoh and Tanaka [1987]. Their simulation reproduces many observed
features of frontal rainbands [e.g., Houze and Hobbs 1982], lending considerable support to the
hypothesis that these bands are ultimately due to conditional symmetric instability.

However, detailed comparison of the theory with observations of meso-scale cloud bands in frontal
(baroclinic) zones is difficult. Aircraft measurements are needed to resolve the associated motion,
temperature and moisture fields. Bennetts and Ryder [1984] attempted to do this and constructed a
schematic diagram, displayed in fig. 6.2, of a cloud band resulting from conditional symmetric instability
based on theory and observations. The observations clearly revealed the strong slope of the circulation,
demonstrating that baroclinicity is an important feature of the flow. Bennetts and Ryder [1984] divided
the atmosphere into three layers: a conditionally, statically unstable boundary layer; a middle weakly
baroclinic zone, marginally stable with respect to saturated ascent; and an upper stable layer. They
suggested that conditional symmetric instability develops in the middle layer. The ascending air in this
layer is inclined at typically a few degrees to the horizontal and the vertical velocity has a.magnitude of
a few tens of cm/s. As a consequence, a band of relatively shallow clouds develops in the region shown
in fig. 6.2. Several cumulonimbus clouds may also be found in this layer. These arc excited, either in the
conditionally unstable lower layer and overshoot into the upper layers, or in locally statically unstable
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Fig. 6.2, Schematic diagram of the mesoscale cloud bands found in the case siudy of Bennets and Ryder [1985]. Cb cloud = cumulonimbus coud.

regions developing at the top of the cloud band resulting from conditional symmetric instability [sce
also Saitoh and Tanaka 1987|. The measurements made by Bennetts and Ryder [1984] were too coarse
to allow for a clear distinction between the motions associated with ordinary upright (or static)
conditional instability and the motions associated with conditional symmetric baroclinic instability.
More details and references on the problem of rainband formation in frontal zones can be found in the
paper by Parsons and Hobbs [1983] and by Browning [1990].

6.2. Water loading, rainfall and evaporation

Cumudonimbus convection. In the theories discussed in the previous section we assumed that the
condensed water vapour falls out of the atmosphere immediately as rain. In reality this does not happen
until the liquid water mixing ratio. r,, has exceeded a certain threshold value. The liquid water present
in a moist updraught reduces the upward buoyancy, B, by an amount equal to gr,. This may make the
buoyancy force negative, in which case the updraught cannot be maintained and the cloud dies out.
Liquid water mixing ratios of 0.5 g m ™" are not uncommon in ordinary non-precipitating cumulus clouds
[Rogers and Yau 1989, Cotton and Anthes 1989]. As far as its effect on buoyancy is concerned, this is
equivalent to a negative temperature perturbation of about 0.I5K if p=1kgm " Ludlam [1980]
reports measurements of total concentration of condensed water at high levels (above 8 km) in severe
thunderstorms over Oklahoma of about 10gm * and in one casc 44gm

Except for liquid water loading, as it is called, cooling due to evaporation and melting of falling rain,
snow and hail also have a strong negative influence on the upward buoyancy. In fact Kessinger et al.
[1988] estimated that 22% of the downward acceleration in a strong downdraught (a so-called
downburst) beneath a thunderstorm cloud was due to condensate loading and 78% was due to cooling
as a result of melting and evaporation.

Obviously, these processes are not very advantageous for the maintenance of the updraught or
cloud. Numerical model simulations (see fig. 6.3) have shown that the lower part of the cloud wilt tend
to collapse within onc hour [Takeda 1971, Ogura and Takahashi 1971]. A circulation with a sign
opposite to that of the original circulation is generated by the rain water loading and the cooling due to
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Fig. 6.3, The streamline pastern {solid lines) in 4 numerical simulation of an isolated shower. The model is two-dimensional and slab-symmetric
around x = U, Rain water content in gm ' is indicated by dashed lines [from Takeda 1971].

cvaporation. The updraught associated with this ““cold pool” circulation is detached from the original
updraught. This eventually generates a new cloud beside the old dissipating cloud.

Despite this, thunderstorms producing large amounts of rain may persist for many hours. In the
following section we will discuss the role of environmental vertical wind-shear in promoting the
longevity of these meso-scale weather systems.

6.3. Vertical wind-shear
Types of thunderstorm. In the absence of vertical wind-shear, an ordinary buoyantly driven cumulus

or cumulonimbus cloud would grow, produce rain and decay over a period of about 1h. Severe
thunderstorms in these circumstances arc only produced when CAPE (sce section 5.4) is large
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[Kingsmill and Wakimoto 1991]. Byers and Braham [1949] referred to these relatively short-lived
thunderstorms as *“‘air-mass™ thunderstorms. Since the pioneering study by Byers and Braham it has
become ever more clear that more than just a large degree of CAPE is needed to produce a severe
thunderstorm that persists longer than | h. It appears that vertical wind-shear is a crucial factor.

Vertical shear of the large scale wind may force the cloud into a configuration that prevents the
updraught from becoming detached from the ground. In this section we will give a short review of the
cffect of wind-shear on deep convection. This can serve simply as an illustration. The subject is very
complicated and, on the theoretical side, it relies heavily on computer simulation.

Results of lincar theory, discussed in sections 4.1.3 and 4.1.4, suggest that, except when condition
(4.22) is satisfied, non-precipitating clouds would probably grow more slowly in shear than in uniform
flow. However, when rain is involved, vertical wind-shear, with weak wind speeds betow and high wind
speeds aloft, promotes the lifetime of clouds because it allows for a spatial separation of the updraught
from the evaporating downdraught and rainshaft, as shown in fig. 6.4.

The picture of a thunderstorm in figure 6.4 corresponds most closely to a so-called squall line. One
can, in fact, distinguish several types of thunderstorms, such as (a) air-mass thunderstorms, (b) squall
lines, () multicellular thunderstorms, (d) supercell thunderstorms and (¢) meso-scale convective
complexes. In reality this division is, of course, not so clear-cut. Most large unbalanced deep convective
weather systems have properties of all five types mentioned above. The convective systems displayed in
figs. 2.9 and 2.11 have many propertics in common with multicellular thunderstorms (in the carly
stages; sce fig. 2.9a) and with squall lines (in the later stages; see fig. 2.9b).

Interaction of the cold pool with unidirectional shear (the squall line). Although it is not known
precisely why thunderstorms occur in concert along a line to form a squali line, this fact does allow for a
considerable simplification of the theory. As a first and good approximation we can assume that the
squall line is a convection roll organized perpendicular to the mean wind. According to studies by
Moncrieff [1978] and Seitter and Kuo [1983], thc mean wind-shear causes the updraught to lean
downshear. The squall line moves with a speed greater than the mean wind at low level but slower than
the mean wind at high level. The level at which the mean wind speed is equat to the cloud-propagation
speed is referred to as the steering level. The steering level for the thunderstorms of July 11, 1984,
shown in figs. 2.9 and 2.11, for example, is about 4 km. The clouds are fed below this level with warm,
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Fig. 6.4. Cloud boundarics and simplificd circulation (arrows denote ftow) of a typical mature squall-ling-type thunderstorm. Vertical scale has been
cxaggerated fivefold compared with the horizontal scale [from Parker 1988




34 Aarnout van Debden, The dynamics of meso-scafe atmospheric circulations

refatively bumid air from the front (sec fig. 6.4). Due to the downshear tilt, the rain will fall into this
inflow stream, which will of course inhibit further storm growth. However, in certain conditions the
environmental wind-shear can interact constructively with the circulation generated by the cold pool so
that the storm can persist and cven grow. Thorpe ct al. [1982] and Rotunno ct al. [1988] identificd these
conditions with the help of numerical simulations. They discovered that strong wind-shear in the lowest
one or two kilometers (below the steering level) and little vertical wind-shear above would produce the
most long-lived storms. This represents the optimal state for long-lived squall lines. The absence of
shear above the steering level prevents the storm from leaning downshear and reduces the inhibiting
effect of shear on the updraught. The effect of the low-level relative countercurrent with shear is more
subtle. The cold pool circulation and the circulation associated with the low-level shear in the optimal
state have opposite signs. According to Rotunno ct al. [1988] and Weisman ct al. [1988], this is
favourable to the updraught and also keeps it in place relative to the storm [Wilhelmson and Klemp
1978, Thorpe and Miller 1978].
The condition for an optimal state is expressed by Rotunno et al. [1988] as

1
Auf,zzf (-B)Ydz=¢", (6.7)
1}

where An,, represents the difference in the mean wind velocity across the low level environmental shear
layer, B (=g(0'16, — r,)) represents the full buoyancy term. including the effect of rain water loading,
and the integral is taken within the cold pool and integrated from the surface to a height, H. defined to
be level where the negative buoyancy first vanishes. For ¢/An = 1 (i.c. shear is weak relative to the cold
pool circulation), lifting at the head of the pool is weakened. For ¢/Au <1, lifting also decreases due to
the strong wind-shear.

Thunderstorm splitting. In unidirectional shear conditions for long-lived storms are quite critical.
The cold pool circulation and the low-level shear must maintain a delicate balance. The storm must
somchow maintain its identity as a line of clouds oriented perpendicular to the environmental wind. 1t is
possible that imbalances in the jet over a frontal zone, which set off gravity-incrtia waves, principally
take care of this organization [Zhang and Fritsch 1988, Bluestein and Jain 1985] (see also scction 6.4).
In the absence of such large-scale forcing, the rainwater loading effect will induce a spliting of the
updraught as shown in fig. 6.5a. Two new counter-rotating updraughts arc formed which travel to the
right and left, respectively. The right moving updraught takes on positive vertical vorticity, whereas the
left moving updraught acquires anticyclonic vertical vorticity. This can be understood with the help of
the linearised vertical vorticity equation (4.37), which expresses the change in { due to tilting to the
vertical of horizontal environmental vorticity due to horizontal gradients in the vertical velocity. The
most intense rotation around a vertical axis is thus created on the flanks of the updraught. From (4.37)
it follows that the ¢ will be positive if aw/ay =0, which is preciscly the case on the right flank of the
original updraught.

The interaction of the updraught with the environmental shear creates dynamic pressure perturba-
tions. Following Rotunno and Klemp [1982], this can be understood from the linear diagnostic equation
(4.35) for the pressure. which, neglecting buoyancy and stratification, becomes

VI = (216, )(8n,/ az) dwiax . (6.8)
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Fig. 6.5. Horizonal comour plots of vertical velocity a1 2.25km above ground level al different times in 2 numerical simulation with the
three-dimensional cloud model described by Klemp and Wilhelmson [1978] for two cases: (1) with an environmental wind which mcreases in speed
but not in direction with increasing height, and (b) with an environmental wind which increases in speed and veers clockwise with increasing height,
Updraughts (solid lines) and downdraughts {dashed lines) are contoured at 4ms ' increments. The heavy line is the outline of the 0.5gm :
rainwater field [from Rotunno and Klemp 1982].

If we assume that {7 can be written as A exp[i(kx + nz)], we can easily deduce that V*fT= —J1. This
implies that

=(du,/oz) aw/ox . (6.9)

If du,/az >0, II will be positive on the upshear side of the updraught and negative on the downshear
side. This leads to a negative vertical pressure gradient on the downshear side, promoting updraught
propagation downshear. But, since the updraught disappears due to rainwater loading, this does not
happen.

The effect of turning of wind-direction with height (rotating supercell thunderstorms). The dynamic
pressure gradients do, however, play an important role when the environmental wind turns with height.
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In most cases of deep convection in North America and Europe, the wind direction turns clockwise with
height. This induces negative vertical dynamic pressure gradients on the right-hand side of the storm.
This in turn lavours the growth of the right-moving updraught and suppresses the left moving updraught
(sec figure 6.5b). This cffect is strongest with very intense vertical shear. The cyclonically rotating right
moving storm may turn into a so-called supercell thunderstorm, which is the most violent type of
thunderstorm (sce fig. 6.6). The rotation and the dynamically induced vertical pressure gradient help to
produce tornadoes. Supercell storms occur most frequently in the southern interior states of North
Amecrica to the cast of the Rocky mountains. They are relatively rare in Europe. Occasionally they do,
however, arise over France, and subsequently affect the neighbouring countries to the north and east
[Wessels 1968).

The meso-scale convective complex. Another type of convective weather system, which does not
require large environmental vertical wind-shear, was identified by Maddox [1980]. It is termed
meso-scale convective complex (MCC). The MCC has a more circular form than the squall line (at least
on satellite images) and travels relatively slowly. It has a relatively long lifetime (=12 h), acquires a
large arcal extent (=10 km®) and produces tremendous amounts of rain at one location [McAnelly and
Cotton 1989]. MCCs result from mergers and interactions between groups of storms that develop in
different locations. Some MCCs arc initially squall lines that acquire MCC characteristics [Maddox et al.
1986]. Presumably large-scale low-level convergence induced by, for example, a cold core upper level
cyclone, keeps these systems going in the first few hours of their lifetime. Orographic lifting may also
contribute to the long lifetime. Duc to the slow movement of the MCC, prolonged and intense laient
heating occurs in the middle of the troposphere over a fixed area comparable to the local Rossby radius
of deformation. This induces dynamically large-scale pressure and temperature perturbations followed
by a partial adjustment of the flow to geostrophic balance [Cotton et al. 1989]. In the later stages of the
lifetime of an MCC, a cyclonic warm-core vortex appears at mid-levels. At higher levels, an anticyclonic
circulation develops, which may sometimes become incrtially unstable. The cyclonic circulation at
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Fig. 6.6. Schematic plan of a tornadic supercell thunderstorm. The solid Jine encompasses the radar ceho. Regions with strong vertical motion are
enclosed by thin solid lines and marked with a plus sign or a minus sign. The flow near the ground is indicated by arrows. Tornadoes are most hikely
to form at the points marked by a T [adapted from Lemon and Doswell 1979, Davies-Jones 1985),
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mid-levels can frequently be seen in the cloud pattern of decaying MCCs on satellite images [e.g.,
Zhang and Fritsch 988, Menard and Fritsch 1989]. MCCs have many features in common with tropical
cloud clusters [Cotton et al. 1989] and with torrential rainstorms occurring in the autumn over the warm
Mediterranean sea and adjacent coast (for example, more than 1000 mm in 36 h at one place on the east
coast of Spain in 1987}, frequently in connection with a large-scale cold-core cyclone [Rivera 1990,
Llasat and Puigcerver 1990].

6.4. Frontogenesis and jet streaks

Geostrophically forced ageostrophic circulations around jet streaks. Intense deep convection usually
occurs in the vicinity of a well-developed intensifying cold front [Ludiam 1980]. Because the cross-front
temperature gradient is not uniform along the front, the upper level jet, associated with this front, is
typified by concentrations of stronger wind in the jet streaks alternating with weaker winds [Riehl et al.
1954, Palmén and Newton 1969). In this section we will discuss the way in which these variations
promote or force the formation of severe thunderstorms. We will not discuss the formation of fronts
themselves. For that we refer to Hoskins [1982], Orlanski et al. [1985] and section 5.5.

Due to geostrophic imbalances, secondary circulations perpendicular to the jet axis are set up at the
entrance and exit regions of the jet streaks [Bluestein 1986, Ewenz and Kraus 1990). Parcels of air
travelling through the upper level jet core accelerate into the jet streak through unbalanced (ageo-
strophic) motion directed towards lower pressure. After passing through the region of maximum winds,
the parcels decelerate through ageostrophic motion towards higher pressure. The secondary circulation
is thermally direct in the entrance or confluence region and thermally indirect in the exit region or delta
of the jet streak (see fig. 6.7). In the exit region, the secondary circulation is frontogenetic because the
downward motion on the warm side of the front causes further adiabatic warming, while the upward
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Fig. 67. The geostrophically forced {see section 5.5) circulation in the vicinity of a jet streak in a baroclinic zone. Thin solid lines are streamlines
(With thanks 10 P. Esser.)
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motion on the cool side of the front causes further adiabatic cooling. In the entrance region the
situation is reversed, i.c. the sccondary circulation is frontolytic, provided of course that the tempera-
turc stratification is stable. Hence, the jet streak progresses forward, along the current. Simultancously,
due 1o the secondary circulation relatively cool air is advected into the exit region of the jet streak at
upper levels while relatively warm air is advected into the exit region of the jet streak at lower levels.
Hence, the stratification is destabilised. Again, the opposite is the case in the entrance region of the jet
streak. Clearly, the left exit region of the jet streak is the most favourable for deep convection [Beebe
and Bates 1955].
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Fig. 6.8. The potential temperature distribution 300 hPa (about 9500 m) (thick sohd line} and at §30hPa (about 1500 m) over western Eurape on
July 11, 1984, at (a) 00UT and (b) 12 UT. The numbers indicate potential temperature in K {eq. (3.16) with p, = W00 1Pa). Regions with a wind
speed greater than 45 ms " (jetstreaks) are enclosed hy very thick solid lines and hatched. The letiers A and B indicate the position of thunderstorm
conplexes. The arrows indicate the direction in which the wind is blowing at ¥KIhPa (approximately paraliel 1o the isentropes). Based on the
analysis performed at the ECMWFE in Reading, UK.
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A case study of thunderstorms forced by a jet streak. The above qualitative theoretical considerations
are illustrated quite clearly by the thunderstorm case (July 11, 1984) which was introduced in chapter 2
(e.g., fig. 2.9). These thunderstorms formed in and remained coupled to the exit region of an upper
level tropospheric jet streak. Figure 6.8 shows the position of the jet streaks at 300 hPa (about 9500 m)
over the Atlantic ocean and western Europe according to the analysis made by the European Centre for
Medium Range Weather Forecasts (ECMWF) for this day at 00 UT and 12 UT, respectively. We see
that two jet streaks were located over western Europe at 00 UT. The thunderstorms at this time were
located precisely in the exit regions of these jet streaks. The thunderstorm, marked B in fig. 6.8a, had
brought 17 mm of rain to De Bilt two hours earlier. A cluster of cumulonimbus clouds was just forming
at point A in the exit region of the jet streak over Spain. In 12 h (see fig. 6.8b) this jet streak traveled
about 1000 km towards the north east. This makes its speed of travel about 83kmh™' (23ms™").
During this time the group of cumulonimbus clouds became more organized, but despite this, remained
coupled to the exit region of the jet streak. Clearly, the intense convection at point A needed the
favourable conditions created by the large-scale flow at higher levels in order to subsist.

The surface conditions in the vicinity of the jet on July 11, 1984 reveal some very interesting
additional details associated with this case (see fig. 6.9). At 06 UT (figs. 6.%a and 2.9a) the thunderstorm

SPAIN Mediterranean Sea

(a}

Fig. 6.9, Surface weather maps of July 11, 1984 at (2) 06 UT, (b) 12 UT and (c) I8 UT. Isobars are shown by solid lines with values indicated in hPa
The letters H and L denote surface pressure maxima and minima, respectively. A dot marks the position of a weather statton as well as the end
point of the wind vector. The barbs amached to the wind vector indicate the 10 min mean windspeed, ff, measured at a height of WO m: no barb
corresponds to f<2.5ms " one barb corresponds to 2.5 = if <3 ms " and one further barb is added for every Sms ' Dashed lines mark zones of
surface convergence and dotted-dashed lines mark zones of surface divergence. [Note: the amalysis of the pressure field and the convergence/
divergence lines has been performed on the basis of an observation network with more than double the density of that shown on these maps.] See
also figs. 2.9-2.11.
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complex was centred over Normandy in a region of weak synoptic horizontal surface-pressure gradients
between the large depression over Ireland and a shallow (i.e. only discernible below a height of about
1500 m) wake low in the lee of the Pyrenees. The low-level convergence line running from south to
north right through central France is an indication of both the secondary circulation induced by the jet
streak and the outflow from the thunderstorms induced by the rain. Six hours later (fig. 6.9b) the
thunderstorms are seen over the Benelux countries as a series of meso-scale highs and lows in the
pressure field (see also fig. 2.10). The shallow low has moved away from the Pyrenees remaining directly
below the jet streak. This suggests that there is some connection between this low and the jet streak.
The low-level secondary horizontal circulation induced by the jet streak is indeed cyclonic (see fig. 6.7}.
Probably, this circulation is reinforced by the presence of the shallow low. Whatever the precise cause of
the movement of this iow, frequently referred to as the “"thundery low” in England and The Netherlands
fe.g., Ludlam 1980], in conjunction with the jet streak, this configuration is certainly very favourable for
further intensification of the thunderstorms because it maintains a warm low level flow of air from the
southeast.

We see, therefore, that large synoptic scale processes, especially at higher levels in the atmosphere,
and meso-scale processes are intimately related in forcing and maintaining intense long-lived convective
storms. Areas in the world which are notorious for severe thunderstorms are the high plains in the
United States, and northern India. In both these areas, intense thunderstorms with cloud-top heights
approaching 20km {Weston 1972] are clearly related to regions of upper-level (about 300 hPa)
divergence in the jetstream [Ramaswamy 1956, Witney 1977, McNulty 1978, Uccellini and Johnson
1979, Uccellini 1980, Kocin et al. 1986].

Jet streaks and associated upper-level short-wave troughs also promote the development of comma-
shaped cloud patterns (so-called comma clouds) in cold air masses over a relatively warm ocean
[Businger and Reed 1989]. These comma clouds have a horizontal scale of about 500 km. They occur
very frequently over the North Pacific in the winter half of the year. In the literature they are frequently
associated with polar lows (see section 5.5 and Twitchell et al. [1989]).

More details on the dynamics of fronts, jets and jet streaks and their relation to meso-scale weather
events, especially in the United States, where a lot of work has been done on this topic, can be found in
the papers by Shapiro [1981], Newton and Trevisan [1984], Bluestein [1986], Keyser [1986] and Keyser
and Shapiro [1986). More about recent developments in the theory of thunderstorms can be found in
the papers by Lilly [1986, 1990], Klemp [1987], the recent book by Cotton and Anthes {1989, and the
books edited by Kessler [1985] and Ray [1986].

6.5. Topography

Time-scales and length-scales associated with flow over mountains. Because major mountain ranges,
such as the Alps and the Canadian Rockies, and major valleys, such as the Rhdne valley in France,
have meso-scale dimensions, L =50-500 km, one can expect these topographic features to generate
meso-scale weather phenomena. This expectation is reinforced when one realizes that an air parcel,
travelling in a large-scale flow at a typical speed, u,, of about 10m/s in the troposphere, takes
L/u,= 1.4 to 14 h to cross a mountain range with the above-mentioned dimensions, which is precisely a
typical meso-scale range of time scales.

In this section we will discuss some dynamicat effects of mountains and valleys on the large-scale flow
in the atmosphere. Effects due to diabatic heating will not be drawn into the discussion. Examples of
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meso-scale weather phenomena due to the presence of mountains and valleys are lee gravity waves,
downslope winds, valley winds, lec vortices and cyclones, and vortex streets.

The response of the atmosphere to mountain forcing depends, among others, on the time, L/u,,
mentioned above, relative to the intrinsic frequencies, N and F. If «,, N and F are constant, we can,
following Quency [1948] |see also Gill 1982], distinguish five regimes:

(1) Potential flow regime (L/u,<2w/N). In this case the atmosphere is forced at a frequency
exceeding the cut-off frequency, N (sec eq. 4.21). The reaction is cvanescent. The air parcels follow the
topography exactly, while the amplitude of the vertical displacements decays with height.

(i) Non-hydrostatic wave regime (L/u,=2#%/N). If the atmosphere is forced with a frequency of
the order of N, buoyancy waves are generated in which air parcels oscillate nearly vertically. For lower
frequencies (< N) are parcels are set into a more obligue oscillation.

(i1i) Hydrostatic non-rotating wave regime (27/F = L/u, > 2#/N). This regime can only exist if the
natural frequencies, N and F, differ by several orders of magnitude. It is most applicable to cquatorial
regions, where F is usually small.

(iv) Rotating wave regime (L/u,=2#/F). In this case the atmosphere reacts primarily in the form
of inertial waves.

(v} Balanced flow regime (L/u,>2#/F). In this regime, solutions arc again evanescent, i.e.
propagating waves are not possible. Disturbances forced by the mountain adjust to geostrophic or
gradient wind balance.

Relevant nondimensional parameters. The first two cases can be defined also in terms of a Froude
number, Fr, defined by Clark and Peltier [1977] as

Fr=2mu,/LN . (6.10)

The potential flow regime corresponds to Fr = 1, while the non-hydrostatic wave regime corresponds to
Fr= 1. At larger time-scales the earth’s rotation becomes more important than stratification. Therefore,
the inertial frequency becomes the relevant time scale instead of the Brunt-Viisila frequency. Thus,
the latter two regimes can be defined in terms of a Rossby number,

Ro=2xmu, /LF . (6.11)
Regime (iv) is characterized by Ro =1 and regime (v) is characterized Ro < 1.

Stationary and transient response. The basis of present-day thcories on mountain waves was
constructed in the 1940s and 1950s principally by Queney [1948], Scorer [1949] and Long [1953a]. The
approach of the former two authors, however, was quite different from that of the latter author.
Queney and Scorer tackled the problem by applying the lincar theory of a continuously stratified fluid,
as described in section 4.1. In contrast, Long used hydraulic theory (egs. 3.32-3.34).

There is, however, one point of resemblance. All three authors were concerned almost exclusively
with the stationary response of the air flow to forcing by mountains. They neglected the transient
response. The term “‘stationary” means that Jocal time-derivatives are zero. For waves this implies that
the horizontal phase velocity, ¢, is zero.

The difference between the transient and the stationary response as well as several other typical
cffects of mountains on fluid flow can be illustrated with the help of the one-layer hydraulic model,
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described in section 3.3. This model was also employed in section 5.1 to illustrate the geostrophic
adjustment process. The governing equations are egs. {3.32-3.34). Let us place a bell-shaped mountain
with a maximum height, H,, in the middle of the domain (x =0). Starting with a mean flow velocity,
u,, and a frec surface which is horizontal in the v-direction, we can integrate eqs. (3.32-3.34) on the
computer to find out what happens afterwards. The result is shown in fig. 6.10. Initially, the flow is
partly blocked by the mountain. Transient surface gravity waves are excited, which propagate in
opposite directions away from the mountain. The wave propagating downstream is a wave of
depression, whereas the wave propagating upstream is a wave of elevation. The latter wave leaves
behind a region with lower flow velocities and higher free-surface elevations. Thus, a horizontal
pressure gradient is set up with high pressure upstream and low pressure downstream from the
mountain. Due to this pressure difference, there is a strong acceleration of the flow (du/dx>0)
immediately behind the mountain crest. Further away downstream, however, there is a sudden
transition back to the initial state. This so-called hydraulic jump is a non-linear phenomenon. The
conditions for the formation of a hydraulic jump can be deduced from eqs. (3.32-3.34), by setting the
local time derivatives equal to zero. After eliminating ah/dx from (3.32) and (3.34), one obtains an
expression for the steady acceleration,

du i ( dh, fv)
e e E el 6.12
dv  p(1-F*) \dx ¢ (6.12)

where the Froude number, Fr, is defined in the context of this model as

Fr=ulfg'h. (6.13)

The hydraulic jump corresponds to the point where Fr = 1, so that, according to (6.12), du/dx becomes
infinite if dA,/dx — fu/g" #0. In fact, in the case shown in fig. 6.10, there are two points at which
Fr=1. The first point is located close to the mountain crest, where d/i,/dx — fv/g' = 0. Here there is a

i

Fig. 6.10. The level of the free surface as a function of time in a numericat integration of the one-laver hydraulic model starting with a horizontal
free surface everywhere. o constant geostrophic velocity, w, = 12mss ', and a bell-shaped mountain with a height, H,. of 300 m in the middle of the
domain. The mountain profile is shown below. The uid depth far from the mountain is 1000 m. The values of other parameters are g =1ms  and
f£=0.0001s . The magnitude of the Froude number (see eg. 6.13) far upstream is (.38,
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smooth transition from subcritical flow (Fr <1) to supercritical flow (Fr> 1). The second point marks
the transition back to the imposed upstream and downstream subcritical flow conditions. This last
transition cannot take place smoothly, hence the hydraulic jump or bore.

Severe downslope winds. The transition from subcritical to supercritical flow is the most interesting
because this leads to very high downslope fluid velocities. Due to the fact that the positive pressure
gradient spreads out upstream, the acceleration of the fluid (i.c. du/dx =0} begins a certain distance
upstream from the crest. This effect accelerates the fluid upslope until the Froude number reaches the
critical value first near the crest (if f=0, Fr=1 at the crest). On the leeward side both 1 — Fr’ and
d/,/dx change sign so that, according to (6.12), the acceleration continues downslope. This may lead to
very high flow speeds on the lee slope of the mountain.

The acceleration of the flow on the upslope side does not always induce a transition from subcritical
to supercritical flow over the crest. For relatively low mountains and small upstream Frounde numbers
the flow remains subcritical everywhere. All we see then is a slight depression of the free surface above
the mountain. The different regimes characterizing single-layer flow over an obstacle in a non-rotating
fluid are summarized in fig. 6.11. Except for Fr, the relative height of the obstacle also governs the
behaviour of the fluid. The diagram presented in fig. 6.11 has been obtained on the basis of theoretical,
cxperimental and numerical investigations carricd out by, among others, Long [1954, 1970, 1972],
Houghton and Kasahara [1968] and Baines [1987]. Note that the solution presented in fig. 6.10
corresponds to the transition between two regimes. In fact, if we continue the integration, the system
will tend towards the subcritical regime. For a study on the cffect of background rotation on one-layer
flow over topography, sce Baines and Leonard [198Y].

Long [1953b] applied the hydraulic model to the atmosphere, in particular to explain the violent
downslope winds and turbulence observed in the flow over the Sierra Nevada range in the United
States. Intense downslope windstorms are observed frequently in many parts of the world. One of the
most well-known examples is the so-called bora wind occurring along the steep coast of Yugoslavia.
This windstorm develops when cold continental air is forced over the coastal mountain range and out
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over the relatively warm Adriatic sea. The acceleration of the flow starts already where the mountains
begin to rise and continues over the crest and down the other side [Smith 1987]. The concept of
blocking and of transition from subcritical to supercritical flow offers a very plausible explanation of
these phenomena. This appears to be confirmed by numerical simulations of two-dimensional continu-
ously stratified flow over a mountain ridge [Durran 1986a, Klemp and Durran 1987].

Very violent downslope winds have also been observed near Boulder, Colorado. In one case, which
is particularly well documented by Lilly [1978], windspeeds of up to 55ms ' were measured on the
castern slopes of the Rocky Mountains (see fig. 6.12a). The analysis of the potential temperature field
for this case, displayed in fig. 6.12b, suggests that the hydraulic model gives a good first-order accurate
description of these phenomena.

An alternative explanation was put forward by Peltier and Clark [1983] and Clark and Peltier [1984].
They interpreted the severe downslope winds in terms of resonant growth of non-linear mountain
buoyancy waves. Vertically propagating buoyancy waves excited by the topography can be reflected at a
critical level, where #,=c_, if the Richardson number is not too large [Thorpe 1981]. In the case of
stationary waves, the critical level corresponds to a level of mean wind reversal (1, = 0). By performing
numerical simulations of two-dimensional flow over a ridge, Clark and Peltier [1984] showed that the
reflected wave could interfere constructively with the incident wave if the critical level was located at
certain discrete heights above the ground. This could, in turn, induce violent winds near the ground and
enhanced pressure drag on the mountain.

Although subsequent investigations, such as Durran [1986a], Klemp and Durran [1987] and
Bacmeister and Pierrchumbert [1988], have confirmed these remarkable numerical results, these
authors have also obtained results with sophisticated numerical models which indicate that severe
downslope winds also develop when the resonant wave amplification mechanism proposed by Peltier
and Clark is not possible. There has been much debate in the past fifteen to twenty years about the
mechanisms responsible for these winds [e.g., Lilly and Klemp 1980, Peltier and Clark 1980, Durran
1986, Smith 1989a]. It is now thought that the mechanism which produces the violent downslope wind is
probably not related to resonant growth of buoyancy waves, but is fundamentally similar to what
happens in the hydraulic model when there is a transition from subcritical to supercritical flow near the
mountain crest [Klemp and Durran 1987]. The issue is, however, still not completely resolved.
Probably, part of the difficulty lies in the fact that the results obtained with sophisticated numerical
models are interpreted either in terms of the “language” of the linearized shallow Boussinesq model or
within the framework of the non-linear, but physically simplified, hydraulic model. Both these models
have severe limitations (see sections 3.2, 3.4 and 4.1.1).

An effect which appears crucial in producing strong downslope winds is the blocking of the low level
air flow by the mountains. If this air cannot flow around the mountain, as in the case of the bora [Smith
1987], the pressure upstream from the mountain will rise until the air is able to flow over the crest.
Another factor which seems to be of importance according to Durran [1986a] is the presence of an
inversion layer such as that shown in fig. 4.1, and also between 500 and 600 mb in fig. 6.12b. The
pressure gradient which is set up due to the blocking is confined principally to levels below the
inversion. Therefore, only the layer below the inversion is accelerated. Figure 6.11 shows that the
thickness of this layer relative to the mountain height determines the response on the lee-side. This has
been tested and confirmed in numerical simulations described by Klemp and Durran [1987].

Dynamically forced strong valley winds (mistral). An analogous situation arises in a valley with a
constriction. Blocking by the constriction can induce a transition from subcritical to supercritical flow




3490 Anrrout van Delden, The dvnamics of meso-scale atmosphenic ciradations

SABRELINER U {m/sec) Il JANUARY 1972
------- Flight Trock It
mb + + + + Tirbulenca Encountered . 20 30
440
200
435
250 -
300 |- B Ranterss vy e | W I & S L S L e - 410
350 p-
425
w0l a0
g 20
00|
3,..__“' B
L3k S 15
500 |-
20
L]
100 - - b, —410
/ 2 32 /,/'.‘-‘4“ 2 "} / r ." o
soa | A /;’ /Connn:nln //’
7 7 / D','/'d W B R 7 sk K
se0 7 . . / // Bculd.r'.luﬂluomsmpl // 77 7 f/f‘
Vit / i o i /// i // /// /%’Caunly/ Finld ///’// /, 2 i
1000 |- WEST ,,/ - :Jlnlnnclo -Nlmlllcnl Miles —Z ,,,/ /,""W' //(D'" " //,,,/ /y/,y////,% éEAS‘I’ do
-ho aloo -90 -50 -70  -60 -50 -40 =30 -zn -10 o :o z &0
SABRELINER - QUEEN AIR 8 (*K) 11 JANUARY 1972
-=Fluight Track
+++++Turbulence Encouniered (ki1
mb
as
200
- 15
250 -
3?5
300 : 30
A50 = 15
2%
Rl I TP
S : 23
T 397 S m—————3075
30— 30%
b 02 % 023 5
s00 -
TO0 P~ 10
aod b Park Continental +¥
Ronge Divide F e .‘-"' ds
son b Boulder _el"::’::,ur?_ft:ille;on
e |, WEST <= [istonce - Nouticol Miles = Airport  {Denver) EAST
s 1 | I ) ] i I ! ) : ! I ! ] | I 1 9
<110 -100 -90¢ ~-80 ~-70 ~60 -50 -40 -30 20 -0 o] 1] 20 30 40 S0 &0

Fig. 6.12. (2) Analysis of the westerly wind component (ms ') on 11 January 1972, made from aircraft light data and radio sondes. (b) Analysis of
the potential temperature field (solid lines), cotresponding 0 (a). The dashed lines show the wircrall rack, with periods of significant turbulence
shown by pluses, The heavy dashed line separates data taken by the Queen Air at bawer levels before 222 (0 UT from that taken by the Sabreliner in
the middle and upper woposphere after 00: 00UT (12 January) [Lilly 1978).



Aarnout van Delden, The dyvnantics of meso-scale amospherie circulaitons 347

leading to continued acceleration of the air down the valley when the valley-width increases. Pettre
[1982] hypothesized that this effect produces the famous mistral wind in the Rhone valley in southern
France. Observations show that winds are relatively weak upstream from the constriction, near
Valence, while there is a sudden increase in the wind downstream from the constriction. The
acceleration continues until a maximum wind speed is reached about 100 km downstream from Valence.
A sudden transition back to caimer conditions, similar to a hydraulic jump, is frequently observed near
Nimes, about 150 km from Valence. Observations compiled by Pettre [1982] seem to indicate, that, here
too, a potential temperature inversion at relatively low levels is required to produce violent mistral
winds.

Foeln. One very conspicuous aspect or property of downslope winds is that some are warm and
others are cold. The bora and mistral are relatively cold winds while the well known foehn, occurring in
the lec of the Alps, is warm. The warmth of the fochn has been attributed in the past to the release of
latent heat in the air rising from the ground at the upwind side of the mountain range. This has been
demonstrated to be a false hypothesis [Sicbert 1990]. The mechanism producing warm foehn is in fact
probably identical to the mechanism producing the cold bora [e.g., Igawa and Nagasawa 1989].
Although the bora is felt as a cold wind, this is only relative to the originally warm air found along the
Adriatic coast. The foehn is felt as a warm wind because it replaces a relatively cold layer of air near the
ground in the lce of the Alps. In all cases the air reaching the ground in the lee of the mountain range
comes from higher altitudes.

Nonhydrostatic resonant lee-waves, Early studies of disturbances produced by mountains were
directed towards finding a theory which could explain the relatively small-scale non-hydrostatic
lee-waves frequently visible as a series of parallel cloud bands (with a spacing in the order of 10 km)
being mountain ranges [e.g., Scorer 1986, Cruette 1976]. Because the amplitude of these phcnomena is
relatively small, linear Boussinesq theory, as described in section 4.1.1, was adopted by the pioneers in
this field to investigate this problem [e.g., Queney 1948, Scorer, 1949]. Smce the horizontal structure of
the wave field is determined by the structure of the mountain, which is not necessarily sinusoidal, this
structure was not specified a priori as was done in section 4.1.1. For two-dimensional Boussinesq flow
over a ridge this yields a wave equation of the form,

FWlox' + a*Wiaz + (P - KY)W=0, (6.14)

where W(x, z) is the amplitude of the wave (compare this equation to (4.20); see also Gill [1982, p.
284}). Scorer [1949] was the first to point out the relevance of the parameter /. He investigated
two-dimensional stationary small-amplitude buoyancy waves, excited by a weak ridge. The Scorer
parameter for these waves becomes

I* = Nu, - (D) /u,, . (6.15)

Equation (6.14) possesses wave-like solutions as long as the wavelength is such that k<! In an
environment where I* <k®, waves with wave-number, k, cannot be sustained. Thus, if the Scorer
parameter decreases with height, all but the longest waves will be trapped and reflected. This will
produce a downstream train of stationary buoyancy mountain waves, which are usually referred to as
resonant {ee-waves. Stationary buoyancy waves upwind of the mountains are not possible because the
horizontal group velocity of stationary waves is directed downstream (i.e. [c,.|<|c,]).
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Flow around mountains. Becausc of limitations on computer power and analytical intractability, very
few studies on the problem of flow over and around three-dimensional mountains have been undertaken
until relatively recently. When air encounters a three-dimensional obstacle, it can not only flow over the
obstacle, it can also flow around it. If the fluid is stably stratified, a so-called dividing streamline may be
formed which separates the upper layer flowing over the hill from the lower layer flowing around the hill
[Sheppard 1956, Snyder et al. 1985]. For a simple background flow with constant «, and constant N, the
dividing streamline height /i is given by

h,=H(-"F"), (6.16)
where “Fr" is defined in yet another way according to
“Fr* = u,/NH, , (6.17)

where H, is the maximum height of the obstacle [Etling 1989]. The Froude number “Fr” has been
placed in quotation marks in order to distinguish it from the other Froude numbers defined in (6.10) and
(6.13). There have been some critical comments in the literature on the many definitions of the Froude
number used in different contexts |e.g., Baines 1987). It might be best to reserve the term Froude
number for the ratio of the flow velocity to the phase speed of some wave, as in (6.13). The “Froude
number” defined above clearly does not meet this requirement. Rather, it is a measure of the ratio of
the mean velocity to the perturbation velocity induced by the mountain. and thus a measure of
non-lincarity. We will not decide here which is the best definition of Fr, since the different definitions
are still used by the different specialists studying flow over and around mountains.

According to ¢q. (6.16) a dividing strcamline will only cxist for “Fr™ < I. The air below the height,
h, will have insufficient kinctic encrgy to overcome the polcntml encrgy barrier, induced by the stable
slmuhmtmn and to flow over the mountain top. The air flowing around the obstacle will form
counter-rotating vortices in the lee, while the air flowing over the obstacle will produced gravity waves.
Theses two principal flow patterns are casily recognized in the cloud pattern on satellite photographs
fe.g., Scorer 1986]. In high “Froude number” flow over relatively steep islands the gravity waves are
frequently seen as so-called ship waves (see fig. 6.13a). In low “Froude number™ flow, lee-vortices form

////
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Q Q (b} vortices shed alternately
) ) O

Fig. 6.13. {a) The crests of “ship” waves behind an isplated obstacle #t high Froude numbers, (b) Vortices shed alternately by the same obstacle ar
low Froude numbers.

(a) crests of ship waves
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especially when there is a strong potential temperature inversion below the mountain top. The vortices
are shed alternately, forming vortex streets (see fig. 6.13b). The similarity with the von Kirman vortex
streets, observed in fluid flow behind a cylinder [e.g., Tritton 1988, Van Dyke 1982, Kundu 1990] is
remarkable. It is, however, not entirely clear whether the two phenomena can be attributed to the same
mechanism. For the von Kirman vortices the production of vertical vorticity is due to the viscous stress
at the side walls of the cylinder and the subsequent viscous boundary layer separation. Laboratory
experiments have revealed vortex shedding in a stably stratified flow around obstacles with slopes of 1/4
to 2. Because the steepest islands have slopes of 1/5 or less, the experimental results cannot be carried
over directly to the atmosphere [Etling 1989, 1990].

Recently, Smolarkiewicz and Rotunno [1989a] have shown that lee-vortices can also be explained
without invoking the traditional arguments on the separation of the frictional boundary layer. They
used a numerical model of inviscid, stress-free flow past a bell-shaped (round) three-dimensional hill.
They demonstrated that vertical vorticity is produced on the lee-side owing to the tilting of horizontally
oriented vorticity produced baroclinically as isentropes deform in response to the flow over the hill.
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Fig. 6.14, Steady state streamlines at the lower surface for “Fr™ = (a} 2.2, (b} 0.66, {¢) .22, (d) 0.055. Concentric contours in the centre of the
domain represent the height of the obstacle with contour interval 0.25H, [Smolarkiewicz and Rotunno 1989a). H, =0.12L.
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This interpretation is rather controversial [Smith 1989b, Smolarkiewicz and Rotunno 1989b]. Figures
6.14 and 6.15 show some of their results. Evidently, lec-vortices are produced only when “Fr”” <0.5. In
fig. 6.15 it can be secn that gravity waves are produced only when “Fr” is large. The domain is probably
too small to verify whether the wave crests form a ship wave pattern. Apparently, vortex shedding does
not occur in the model simulations reported by Smolarkiewicz and Rotunno {198%]. In this context the
very recent study by Schir and Smith [1991] should be mentioned. Here it is shown that the shedding of
vortices is due to a hydrodynamic instability which results from the presence of potential vorticity in the
wilke of the obstacle. This potential vorticity is created due to internal dissipation in the fluid.

In a continuation of their study, Smolarkiewicz and Rotunno {1990) investigated the zone of flow
reversal on the windward side of a three-dimensional obstacle. This is a characteristic feature of low
“Froude number” flow. Here too, the numerical model experiments indicated quite clearly that
frictional boundary layer separation is not needed for upwind stagnation and flow reversal. The flow
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Fig. 6.15. Steady state streamlines in 2 vertical cross section through the centre plane for “Fr* = (a} 2.2, (b) 0.66, (¢) 0.22, {d) 0.055 |Smolarkicwicz
and Rotunno 1989a). £, = 6121,
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reversal is only observed when the aspect ratio, B (across-stream length divided by the along-stream
length), is greater than one. Lee-vortex formation scems to be independent of 8, although the
lee-vortices become much larger and more marked when g increases. The upwind flow reversal when
B >1, tends to destabilize the atmosphere, thus promoting the formation of upwind rainbands. Such
rainbands are regularly observed offshore from Hawaii [Smolarkiewicz ct al. 1988, Rasmussen et al.
1989].

Topography can influence the flow on the meso-scale in many ways, especially in'combination with
diabatic heating (thermally induced valley and slope winds; katabatic winds) and friction. More details
about the topics discussed in this section can be found in the reviews by Smith [1979, 1989a], Durran
(1986b, 1990], Chopra [1973] and Hunt et al. [1991], in the books by Turner [1973], Barry [1981], Gill
[1982] and Pichler [1984], and in the book edited by Kuhn [1989]. Thermally induced wind systems in
mountainous terrain arc not discussed in this review. Details on these phenomena can be found in the
classical review by Defant [1951], in the recent reviews by Vergeiner and Dreiseitl [1987], Kraus [1987],
Whiteman [1990] and Egger [1990a], and in the special issue of Meteorology and Atmospheric Physics
edited by Davies and Pichler [1990].

6.6. Friction

So far we have said very little about friction and dissipation, not because it is unimportant, but more
because a physically sound theory on the nature of friction and dissipation in meso-scale weather
systems is lacking, even though a large amount of literature exists on this topic (for a philosophical
review sec [Scorer 1988]). To do justice to all the literature would make this review excessively long.
Here we will only list a few of the very differing roles played by friction, some of which we have alrcady
discussed earlier.

Frictional forces play both a destructive and a constructive role. An obvious cxample of the
destructive role is the fact that friction converts kinetic encrgy to heat. A more subtle example is the fact
that internal viscous diffusion causes dispersion of gravity waves. This cffect may even eliminate the
gravity waves altogether (see section 5.2). The constructive role of friction is exemplified by the fact that
internal eddy viscous diffusion determines the minimum horizontal wavclength of convection cells (the
so-called smal-scale cut-off wavelength; see section 4.1.2, fig. 4.2), thus shifting the peak in the growth
rate curve to a finite wavelength and providing a mechanism for the organization of the flow.
Furthermore, friction or viscous diffusion is responsible for various hydrodynamic instabilities, such as
the parallel instability of the Ekman layer discussed in section 4.4.4. Frictional convergence at coastlines
is in part responsible for the formation of a meso-scale weather system called the coastal front [Bosart et
al. 1972, Roth 1981, Roeloffzen et al. 1986, van den Berg 1987, Pike 1990]. Frictional convergence in
vortices such as polar lows and tropical cyclones leads to cloud formation, latent heat release and, in
certain circumstances, further growth of the vortex [Charney and Eliassen 1964, Ogura 1964, Ooyama
1969]. Frictional convergence due to the direct stress which the carth’s surface exercises on the air flow,
may even be responsible for the formation of the eyewall in a tropical cyclone [Eliassen 1971, Anthes
1971, Yamasaki 1977, Anthes 1982]. The sensitivity of downslope windstorms to the asymmetry of the
mountain shape arises primarily through surface friction effects [Miller and Durran 1991]. Friction and
turbulent heat fluxes may also redistribute potential vorticity [Shapiro 1976, Danielsen 1990]. We will
see in the next section that mechanisms affecting the distribution of potential vorticity strongly influence
the dynamics of the atmosphere.
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0.7. Diabatic heating

Theories of tropical cyclone growth. Diabatic heating has been discussed in more than one context in
previous sections of this review. We will now make a kind of synthesis of thesec somewhat scattered
discussions and remarks by describing the role played by diabatic heating in the growth of a tropical
cyclone. We will use the concepts which were introduced carlier, especially in section 4.2, and the
observations discussed in section 5.5.

We have seen in section 5.5 that a tropical cyclone is characterized by a high positive relative
vorticity at low levels together with low surface pressure. Other characteristics are: (1) the warm core
(see fig. 5.13), (2) the axisymmetry (see fig. 3.2), (3) gradient wind balance (see fig. 5.11) and thermal
wind balance (sce fig. 5.13), (4) the cye (see fig. 3.2).

The problem of the growth of a tropical cyclone has been an important topic of rescarch since the last
century when it was generally thought that all cyclones have a warm core and therefore must be a result
of heating [for a historical account sec Kutzbach 1979, Palmén and Newton 1969, ch. 5, Hoskins 1990,
Uccellini 1990]. In the first half of this century, this so-called *thermal theory of cyclones™ (also referred
to as “convective cyclone theory” by c.g., Dunn [1951] and Richl [1951]), was pushed into the
background when the connection between the genesis of mid-latitude cyclones and regions of strong
baroclinicity was discovered. With the theory of baroclinic instability, put forward by Charney [1947]
and Eady |194Y], this idea broke through definitively (for a review of progress since then, see Reed
[1990]). However, since baroclinicity is usually very weak in the tropics, this theory obviously did not
apply to tropical cyclones. Therefore, the thermal cyclone theory was kept alive and reserved principally
for the tropics. But serious conceptual problems continued to {rustrate researchers who worked on this
topic in the nineteen fifties and the carly sixties. The problem was that the thermal theory at that time
could not really make the distinction between buoyant cumulus convection and the growth of a tropical
cyclone [e.g., Bergeron 1954]. The first serious theoretical breakthrough with this problem came in the
nineteen sixties with the papers by, notably, Charney and Eliassen [1964], Ogura [1964], Ooyama
{1964, 1969] and Kuo [1965b]. These authors took a rather bold step: they constructed models of a
tropical cyclone in which the motion was assumed to be in hydrostatic balance and in gradient wind
balance at all times (see for example the description of Ooyama’s model in section 3.4). Charney, in his
conversation with George W. Platzman [see Lindzen et al. 1990, pp. 69, 70], states:

“... I became interested in the mechanism of generation of hurricanes and this led 1o the notion of
CISK | Conditional Instability of the Second Kind| . . . I worked on the problem and one of the things that
led me 10 the formulation of CISK was the idea that the forces in a hurricane must be in essential balance,
that you were dealing with a balanced flow, not an inertial gravity oscillation . . . [ Earlier authors) had
dealt with hurricane motions as a sort of gigantic convection cell. I knew that couldn’t be correct, but |
was still puzzled by the existence of conditional instability. Bui it was really Ooyama who pointed out
that, despite the fact that the individual cumudus cells were conditionally unstable, that the hurricane as a
whole was stable.”

The balance assumption was the crucial new step made in 1960s. This assumption does permit
accelerations in the tangential direction, but these are constrained by the condition of thermal wind
balance (see section 5.5). In other words, the tangential accelerations and the accompanying radial
circulation are only required to keep the vortex in thermal wind balance in the presence of diabatic
heating and sources or sinks of angular momentum. Lincar analysis together with computer integrations
of these models reproduced many of the salient features of mature tropical cyclones.

The assumption of hydrostatic balance was probably the most controversial, because it explicitly
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excluded vertical accelerations and convection from the model. In the early 1960s there were no detailed
measurements of vertical velocities in tropical cyclones (as those shown in fig. 5.12). It was generally
thought that the magnitudes of the vertical velocities and vertical accelerations in the eyewall clouds of a
tropical cyclone were comparable to the vertical velocities and vertical accelerations in the most intense
thunderstorms (see fig. 5.6b). The assumption was therefore difficult to justify. Despite this it was
hypothesized that the motions associated with the cumulus clouds could be regarded as unbalanced
turbulence compared to the balanced motions associated with the vortex, and that this unbalanced
turbulence by itself is unimportant to the evolution (the growth and decay) of the vortex. Therefore, the
motion in the model was assumed to be in balance at all times. Recent measurements (see section 5.5)
are showing that the balance assumption is in fact quite accurate as far as relatively intense cyciones are
concerned. It seems, therefore, that the bulk of the eyewall clouds are a direct result of the forced
upward motion, not of hydrostatic conditional instability.

Diabatic heating due to latent heat release in cumulus clouds as well as heating due to turbulent
sensible heat fluxes from the sea surface are treated alike in the balanced model, namely as a prescribed
heat source. The way in which the heat source is prescribed poses great theoretical problems, because
this heat source (especially the latent heat release) is determined strongly by the unbalanced part of the
motion field (see eq. 6.1). Many authors [e.g., Ooyama 1969] have related the heating to the boundary
layer convergence.

But, whatever the precise relation between heating and balanced motion, this heating serves as a
continuous disturbance to the state of balance (especially gradient wind balance). According to the
balanced model, the (inertially and hydrostatically) stable atmosphere reacts to this effect by adjusting
to a new state of balance, which in many cases, but not all [see van Delden 1989a,b], is such that the
vortex intensifies. This forced adjustment is accomplished by a secondary (radial) circulation, as shown
in fig. 5.10 and described mathematically by eq. (5.39). The vortex evolves slowly through a succession
of balanced states.

Since convection itself is neglected, it is better to use the term *‘balanced thermal cyclone theory”
instead of the term “convective cyclone theory” to designate the theory put forward by the above-
mentioned authors between 1964 and 1969. It is referred to by many as “Conditional Instability of the
Second Kind” (CISK)*’. The balanced thermal cyclone theory emphasises that it is diabatic heating
(which encompasses both latent heat release and sensible heating) which is important to the growth of
the cyclone, not convection.

In this section we will show that diabatic heating in a rotating environment may influence the motion
field in more than one way. In order to understand the dynamics of cumulus convection and conditional
instability (see section 6.1) we need only to allude to the role of diabatic heating (latent heat release) as
a source of buoyancy. But, as far as the tropical cyclone is concerned, the role of diabatic heating as a

*' The term “Conditional Instability of the Second Kind” was introduced by Charney and Eliassen [1964]. The linear analytical theory associated
with this concept, as put forward by these authors, has unfortunately led 1o much confusion. Some have even rejecied CISK as a “useless
hypothesis” [e.g.. Emanuel 1995]. Some assumptions made by Charney and Eliassen |1964] are indeed doubtful or confusing. However, Charney
and Eliassen as well as Qoyama [1964] should get credit for focussing on the role played by diabatic heating and frictional convergence, as well as for
making the far from trivial assumption of thermal wind balance. With this assumption the dynamics of the cyclone was separated from the much
more complicated dynamics of cumulus convection. In other words, the tropical cyclone was classified as a “balanced™ weather system. Using the
ideas put forward by Charncy and Eliassen, subsequent authors constructed numerical models which produced realistic simulations of the nonlinear
evolution of i tropical cyclone [e.g., Qoyama 1969, Sundquist 1970), 1t should be noted that Eliassen and Kleinschmidt [1957] and Yanai [1964] had
also made an explicit distinction between unbalanced and balanced motions wn a tropical cyclone. According o these authors, the structure and
growth (not the genesis') of a tropical cyclone could be explained by considening explicitly only the balanced part of the motion.
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source of upper tropospheric pressure perturbations as well as a source and/or sink of potential
vorticity are probably more important than its role as a source of buoyancy.

Diabatic heating as a source of buoyancy. We will proceed with the tropical cyclone later in this
section. Let us first summarize the effect of a diabatic heat source in a non-rotating atmosphere. As long
as diabatic heat sources are limited in extent and in duration, they will function principally as a source
of buoyancy. Heated air parcels will temporarily be out of equilibrium with the environmental vertical
pressure gradient and will, therefore, be accelerated vertically. In a stably stratified non-rotating
atmosphere two cases can be distinguished:

(1) The evanescent or potential flow casc. This is the case if the time-scale of the forcing is shorter
than the buoyancy period. The heated air parcel will rise until it is again in hydrostatic balance with the
environment. However, since the heating is applied over a relatively short period, it will not lead to
significant thermodynamic changes.

(2} The oscillatory case. If the time-scale of the forcing is longer than the buoyancy period, the
heated air parcel will oscillate around the initial position with a period proportional to the forcing time
scale. The frequency, w, of the buoyancy wave which is produced by the heating is given by the
dispersion relation for buoyancy waves, eq. (4.21). The heated air parcel will oscillate at an angle to the
horizontal in order to match the dominant frequency of the forcing. The potential energy, or buoyancy,
will ultimately be radiated away with these buoyancy waves.

In a rotating atmosphere, a new eigenfrequency enters into the problem. The dispersion relation for
waves in the Boussinesq approximation becomes

w =Nsin" ¢+ F cos ¢ (6.18)
(sec cq. 4.64). In polar coordinates the inertial frequency, F. can be cxpressed as follows,

F=r  aMiar=(2M )¢ (6.19)

(see the definition of the parameter A below eq. (5.39)). Assuming F < N, we can now distinguish three
cases:

(1) Potential flow regime, @ = N, The atmosphere readjusts to hydrostatic balance without produc-
ing oscillations.

(2) Wave regime, F < w < N. The atmosphere reacts in the form of buoyancy-inertia waves. The
potential energy is radiated away by these waves.

(3) Gradicent wind adjustment regime, w < F. Waves are not possible. The atmosphere adjusts to
gradient wind balance (5.33), which can be expressed in terms of the angular momentum, M, as

MiIr =4 r=0alllor. (6.20)

In a baroclinic balanced vortex in which there is a radial gradient in potential temperature, sources of
buoyancy will produce oscillations around thermal wind balance (eq. 5.38). Thermal wind balance can
be cxpressed in terms of M, and 0 as

(M2 = Y1) aglaz + gaelar=(2M 0/r' YoM Jaz (6.21)
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The first term on the left-hand side is nearly always much smaller than the second term on the left-hand
side (sec section 5.5). So, approximately

oMoz =(grlie)aelor. (6.22)

This is equivalent to making the shallow Boussinesq approximation. The frequency of the oscillations is
given by eq. (4.64) in which S is now the frequency associated with the baroclinicity of the vortex. For
an axisymmetric vortex § can be expressed as

§%=(gl6,) a6 ar . (6.23)
In a symmetric baroclinic vortex, w’, may become negative if ¢ <0 (see section 4.2, eq. (4.70), and

[Fjertoft 1946, 1950, Ooyama 1966]). In the Boussinesq approximation ¢ is related to Ertel’s potential
vorticity, {2, by

q=(2pgM /8,1 ). . (6.24)
where (2, can be expressed as
1 (aM“ a0 M, aa)
P o\ dr a9z dz or (6.25)

[e.g., Shutts 1981]. Recall that potential vorticity is conserved in adiabatic inviscid flow.

If the baroclinicity is sufficiently strong, g will become negative and symmetric disturbances will grow
without limit (instability). [t can be shown (see section 4.2 and Ooyama [1966]) that this criterion is
equivalent to the condition

(az/ar), > (azlar),, . (6.26)

In other words, the slope of the potential temperature surfaces must be greater than the slope of the
angular momentum surfaces. This will only happen in the outflow leg of a relatively intense balanced
warm-core cyclone.

Diabatic heating as a source of pressure perturbations. In a statically stable atmosphere the M, and 8
surfaces are oriented as shown in fig. 6.16. Movement of air parcels at an angle to M, surfaces will be
hampered by the horizontal pressure gradient force and the inertial forces, while movement at an angle
to the isentropes will be hampered by the environmental hydrostatic vertical pressure gradient force.
How then is the initial growth of a vortex possible?

The answer to this question lies in the fact that diabatic heating also serves as a source of pressure
perturbations. Due to these pressure perturbations, air parcels can flow across ambient angular
momentum surfaces and, thus, change the angular momentum distribution in a cyclone.

Suppose a circular heat source is centred at r=0 and at a certain unspecified height in the
troposphere (see fig. 6.17a). In the vertical (r-z) plane this will induce an upward bulging of isobars
above the heat source and a downward bulging of isentropes in the heating area. Neglecting further
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Fig. 616, The distributions of angular momentum, M, (dashed Jine), and potential temperature (solid line) as a function of height (z) and horizontal
distance (in this case the Tadius #) in a statically stable barotropic rotating mmosphere. 8 ncreases upwards and M, increases with increasing r.
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Fig. 6.17, (a)} The distributions of potential temperature (#) and pressure (p) as functions of r and = after the dark regivn has been heated. (b) The
dircction of the flow as a result of this heating and the new pressure distribution resulting from this flow.

diabatic effects, this will lead to an outflow of air along isentropes above the heat source. This outflow
will lead to a pressure drop below and therefore inflow (see fig. 6.17b). In a non-rotating atmosphere
this inflow will cancel the initial pressure drop. However, in a rotating atmosphere ( f # 0) the pressure
drop at Jow levels will be only partla]ly cancelled, because ambient air with finite angular momentum,
M, = fr/2 (assuming that the air at large radii is at rest), is advected into the heating area. Since M, i
conserved, the tangential velocity, #, must increase as air is drawn into the heating area. The mernal
forces acting on an air parcel in an axisymmetric vortex are the Coriolis force and centrifugal force.
Both will act to decelerate an inward travelling air parcel. The net inertial force per unit mass F, can be
expressed in terms of M, and r as

Fo=Mir-1f. (6.27)

We sce that the outward force increases drastically as the parcel comes closer to the axis (r = 0) (see fig.
6.18). A pressure gradient is needed to counteract this force. Therefore, the pressure gradient initially
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Fig. 6.18. The inertial force. Fy. on an wr parcel as a function of r for a fixed finite value of the angular momentum, A4,

set up by the outflow aloft will not be completely offset by the inflow. That is, in the final adjusted state
there is a balance between the inertial forces and the pressure gradient force.

Let us assume that the outflow aloft can maintain a steady constant pressure gradient force, F,, at
low levels at a radius r=r,. We can then calculate the radius of origin, R,, of air parcels with just
enough angular momentum to produce a balance between F, and F, at r=r_, i.c.

(M= Lfr.=F,, (6.28)

where (M), is the angular momentum of the air parcel at r = R,. Solving eq. (6.28) for R,, using the
definition of M,, (5.41), yields

Ry = —uy/f + (uif* + r\4FIfr + )2, (6.29)

where u, is the tangential velocity of the air parcel at r=R,. Note that if F, is positive (in a
low-pressure system), this equation has a solution, but if F, is sufficiently negative (in a high-pressure
system), there is no solution. If 1, =0,

Ry=(4Friff?)'"* . (6.30)

By analogy with the Rossby radius of deformation, we will call this length scale the radius of influence.

Figure 6.19 visualizes the dependence of the radius of infiluence on F, for two values of u,. We see
that, for representative pressure gradients per unit mass of 0.01 ms ™ (if p = 1 kg m > this is equivalent
to 107*Pam™' or 1hPa per 10km) to 0.2ms ", R, lies in between 40 km and nearly 100 km if «, =0.
These typically are meso-scale dimensions. If the air parcel has a finite tangential velocity, u,, before it
is drawn into the area where the steady pressure forcing is taking place, the radius of origin is
considerably less. It may even become smaller than r_. This implies that air must be drawn from inside
the vortex if tangential velocities are sufficiently high.

In reality, some angular momentum will however be lost due to frictional dissipation in the boundary

layer. Therefore, an air parcel arrives in the centre of the cyclone with a lower value of M, than it had
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when it started its journey inwards. This implies that the air parcel must in fact have a larger radius of
origin in order to achieve balance.

Diabatic heating as a source or sink of potential vorticity. The initiation of a vortex requires quite a
bit of pressure forcing. It is thus not surprising that tropical cyclones are never observed to appear
spontancously and grow exponentially in intensity right from the start. As many writers [e.g., Riehl
1951] have pointed out, intense tropical cyclones always cvolve from some disturbance of lesser
intensity, which may have been in existence for a long time. However, once the intensification has
started, further intensification will require less and less effort. The reason for this has to do with the
warm core. The isentropes will become more and more inclined to the horizontal as the vortex
intensifies. Because the vortex strives towards thermal wind balance, this must be accompanied by a
concurrent tilting to the vertical of M, surfaces. The M, and @ surfaces will thus come closer and closer
together (see fig. 6.20). This will reduce the ambient symmetric stability and thus facilitate the outflow.
Air parcels, moving along isentropes, will hardly have to deviate from the prevailing M, surface. This
argument suggests that the chances of further deepening of the vortex increase as the core becomes
warmer. A cold-core vortex will probably not deepen at all due to diabatic heating. To understand this
requires a short discussion of the role of diabatic heating as a sink of potential vorticity.

The potential vorticity is proportional to the tangent of the angle between the 8 surfaces and M,
surfaces (see section 4.2, eqs. (4.72, 4.73)). This implies that the potential vorticity decreases as the
vortex becomes warmer (see fig. 6.20 and eq. (6.25)). This suggests that the diabatic heating functions
as a sink of potential vorticity. Figure 6.21a shows the change in the potential temperature profile if
there is a heat source at the earth’s surface. The decrease of N at low levels due to such a heat source
will indeed lead to a decrease in the potential vorticity. When the heat source is located higher up in the
atmosphere, the effect on the potential vorticity distribution is a little more complicated (see fig. 6.21b).
In this case the potential vorticity decreases above the heat source while it increases below the heat
source. It should be remarked that there is still some discussion on the interpretation of the effect of
diabatic heating and diffusion on the potential vorticity distribution [see Haynes and Mclntyre 1987,
1990, Danielsen 1990].

The most important sources of heat in a tropical cyclone are the sensible heat flux from the ocean
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r=0

Fig. 6.20. The disiributions of angular momentum, M, (dashed line), and potential temperature (solid line) in a stable baroclinic warm core eyclone.
Compare this figure with fig. 6.16.

and latent heat relcase due to condensation in cumulus clouds. Although the importance of latent heat
release has been stressed the most in the past, it is becoming increasingly clear recently that the sensible
heat flux from the ocean is probably much more important. Emanuel [1986b], Rotunno and Emanuel
[1987] and Emanuel and Rotunno [1989] have stressed this point for both the polar fow and the tropical
cyclone. These authors even go so far as to assert that latent heat release plays no role in vortex
intensification. They claim that the net effect of latent heat release, adiabatic cooling and condensate
loading are not sufficient to make the rising air positively buoyant compared to the subsiding air in the
environment. In other words, CAPE =0, in spite of latent heat release (see eq. 5.22). The assertion
makes clear that the secondary circulation is not a convection cell driven by buoyant instability. Rather,
it is driven by upper-level positive pressure perturbations caused by the heating and expansion of the air
below. One result of the forced secondary circulation is that potentially warm air is advected into the
eye from the stratosphere. The warm core is principally a result of this effect.

|

!
f
', Q

Fig. 6.21. The change in the vertical potential temperature profile (solid line: initial: dashed line: final) us a consequence of diabatic heating and the
associated local change in the potential vorticity: (a) near the earth’s surface and (b} somewhere higher in the atmosphere. See the text for further
information.
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If, indeed, the most important heat source is the sensible heat flux from the ocean, the potential
vorticity will decrease steadily until it is zero. Shutts [1981] investigated the structure of a balanced
vortex with zero potential vorticity. The specification of the potential vorticity distribution together with
the balance conditions fixes the velocity distribution and temperature distribution. This is called the
“invertibility principle” by Hoskins et al. [1985] [sce also Egger 1990b]. The calculations madc by
Shutts [1981] reveal that the zero potential vorticity balanced vortex has a structure very similar to a
real hurricane. This lends additional support to the conjecture that the hurricane is a balanced structure
(close to thermal wind balance).

A vortex in the atmosphere is not a closed system. Neglecting diabatic heating, friction and other
non-conservative forces, potential vorticity is materially conserved |e.g.. Pedlosky 1987). Thus, positive
potential vorticity from the static barotropic environment will be drawn in at low levels and, probably
also, from the stratosphere into the eye. Therefore, the potential vorticity wilt approach zero only in the
outfiow leg near the potential vorticity sink. Because the resistance to displacements in the r-z plane in
a balanced symmetric vortex (the stiffness; see section 4.2) is proportional to the potential vorticity, this
actually turns out to be very advantageous for further intensification of the vortex. Radial flow will only
be hampered in the inflow leg, where the stiffness with respect to symmetric disturbances is high, and
not in the outflow leg. This will obviously lead to a pressure decrease at low levels.

More details about the structure of a balanced vortex such as a tropical cyclone, in relation to
potential vorticity can be found in papers by Shutts and Thorpe [1978], Thorpe [1985] and Schubert and
Alworth [1987].

The effect of diabatic heating on cyclone growth as a function cyclone baroclinicity. The qualitative
remarks discussed in the previous subsection are supported by calculations performed by van Delden
[1989a,b]. Ooyama’s [1969] balanced axisymmetric cyclone model (sce fig. 3.4) was employed to
calculate the radial circulation needed to maintain balance in the presence of self-induced diabatic heat
sources in a vortex with a prescribed tangential vciocnty distribution. The diabatic heating in this model
is parameterised by a mass flux **Q” (units: ms '), between layers 1 and 2. This mass flux functions as
a sink of potential vorticity in the upper layer (2) and a source of potential vorticity in the lower layer
(1)*’. Therefore, considering only its effect on the potential vorticity distribution, “Q" is a more
accurate parameterisation of latent heat release than of sensible heat fluxes at the earth’s surface.

The model also allows for boundary layer convergence in the form of a vertical mass flux (w) into the
lower layer (1) from below (see fig. 3.4). In fact, “Q™ is set proportional to w by

“Q=qw’ ;o wi=w ifw=0, w =0 ifw=0. (6.31)

A lincar analysis of this mode] [Ooyama 1969] shows that the vortex will grow only when n > 1. That is,
if there is a net mass flux out of the lower layer (1).

The central (r =0) surface pressure decrease needed to maintain the model vortex in thermal wind
balance is plotted in fig. 6.22 as a function of vortex baroclinicity for a vortex with a prescribed radial
profile of tangential velocity,

*" The potential vorticity in an individual layer in Ooyama’s model 15 defined as absolute vorticity divided by fayer thickness {see also section 5.1).
Therefore, strictly speaking, it is not the same as Ertel's potential vorticity, which apart from a factor Hp is defined as the scalar product of the
vorlicity veetor and the potential temperature gradient (see ¢q. 6.25). However, both have the property of being conserved in the absence of diabatic
processes and both are proportienal to the vortcity.
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Fig. 6.22. The central decpening rate as a function of voriex baroclinicity, 8. for an intense vortex (maximum tangential velocity = 30ms ") and for
a weak vortex (maximum tangential velocity =5ms ') [van Delden 1989b|.

B 2ir T
U H+ oo, (6.32)
where 7 is the radius of maximum tangential wind and #, is the maximum tangential wind in layer j. This
wind profile is very similar to that observed in hurricane Alicia, shown in fig. 5.11. The calculations were
performed for two cases: a weak vortex (maximum tangential velocity 5ms™') and a strong vortex
(maximum tangential velocity 30ms™'). The radius of maximum wind was 50 km in both cases. The
baroclinicity, B, is defined as B = u,/u,. In a warm-core vortex B < 1, since u decreases with height (see
fig. 5.13). In a cold-core vortex B > 1. More details concerning the calculations can be found in van
Delden [1989a,b].

The results show that a weak vortex will hardly deepen, independent of the baroclinicity. As
expected, the deepening rate increases as the core becomes warmer. The results also show that a cold
core vortex will tend to fill (at least initially) as a result of diabatic heating. The reasons for this are

quite subtie. It would be going too far to discuss them here. They are discussed by van Delden
[198%a,b].

On the basis of the foregoing we may conclude that an important property of diabatic heating, as far
as its effect on the deepening of a balanced vortex is concerned, is its role as a sink of potential vorticity
in the outflow leg of the radial circulation. This clearly promotes the outflow relative to the inflow and,
thus, further intensification. Since the sink of potential vorticity is most effective in intensifying the
cyclone if the diabatic heating is located at low levels, this explains the general finding in numerical and
theoretical studies of tropical cyclones and polar lows and mid-latitude cyclones that low-level heating is
more efficient at intensifying a vortex than upper-level heating [Sardie and Warner 1983, Hack and
Schubert 1986].

There is of course a lot more to be said about the fascinating dynamics of tropical cyclones. For
example, what happens if the outflow becomes (conditionally) baroclinically unstable (see sections 4.2
and 6.1)? Does this lead to enhanced cyclone intensification? What dynamical processes govern the
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formation of convective spiral bands and the secondary wind maxima in conjunction with concentric
cyewalls [Willoughby et al. 1982, 1984, Willoughby 1990a]? How do non-axisymmetric processes,
espevially in the outer part of the cyclone [e.g., Flatau and Stevens 1989], affect the cyclone as a whole?
Remember that M, is not conserved when there are azimuthal pressure gradients. Another question
concerns the relation or feedback between the heat source and the cyclone. These questions are still
under active investigation. Interested readers are referred to the books by Palmén and Newton {1969],
Simpson and Riehl [1981], Anthes [1982], Elsberry et al. [1987] and Cotton and Anthes [1989], the
reviews by Yanai [1964], Anthes [1974], Ooyama [1982], Willoughby [1988] and Emanue! [1991], and
recent observational papers by Weatherford and Gray [1988] and Willoughby [1990a]. Other discussions
of the tropical cyclone in this review can be found in chapter 2 and scctions 3.3, 3.4, 5.3 and 55

7. Conclusion
7.1. Prediction of meso-scale weather systems

In view of the fact that many, if not most, significant metcorological events arc associated with
meso-scale features, and since the prediction of the weather is an important activity of meteorologists, a
short section about meso-scale weather prediction is in order.

Within this context, we should start by recapitulating the principal idea which this review attempts to
convey to the reader, namely, the idea that the meso-scale represents a transition regime between iwo
relatively well defined atmospheric flow regimes, i.c. the large-scale balanced regime and the small scale
unbalanced regime (see c.g., fig. 5.4). Onc conscquence of this fact is that no unique scaling of the
basic hydrodynamic and thermodynamic equations, such as that performed by Charney {1948] and
Eliassen [1948] for large-scale weather systems (for a more recent reference on this topic, see Lynch
[1989]), will produce a simplified set of equations that will apply under all meso-scale meteorological
conditions. A numecrical modei which aims to predict the weather down to the meso-scale will therefore
have to be based on the complete set of equations, including a rather detailed description of the local
forcing functions, such as variations in terrain, condensation heating and cvaporative cooling, infrared
and short-wave radiation, evaporation and conduction of heat at the carth-air interface and turbulent
transfer of heat and moisture upward in the boundary layer. This obviously is a very extensive and
difficult task.

The predictability of the weather is determined principally by (a) the knowledge of the initial
conditions, (b) the knowledge of the boundary conditions in space, and (c) the representation of the
forcing function in the model.

The initial condition is obtained from a combination of observations, a model prediction from a
previous state (e.g.. six hours earlier), which functions as a guessficld, and the requirement that the
velocity field and the pressure field are in some kind of dynamic balance. This last requirement is
imposed in order to prevent as much as possible the excitation of gravity waves in the modecl from
imbalances due to observation errors. However, there is the danger that this condition also filters out
real imbalances that are essential for the (further) development of certain meso-scale weather systems.
Another problem with the balance condition is that the equations describing the balanced state must be
of the elliptic type. Only then can a unique initial state be found (sec section 5.5). This is not always the
casc, especially in the equatorial region, where the Coriolis parameter approaches zero [Tribbia 1981].
The paper by Heijboer et al. [1989] gives a good impression of the problems involved in initializing a
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meso-scale forecasting model used in The Netherlands. Other recent papers which discuss the
initialization and data assimilation problem applied to meso-scale weather prediction models are those
by Briere [1982], Bijlsma and Hafkenscheid [1986] and Lilly [1990]. The opinion of many is that the
spatial and especially the temporal resolution of the present upper air observation system is inadequate
for numerical meso-scale weather forecasting. We will have to await the instailation of meso-scale
networks of radars measuring vertical profiles of wind and temperature. In the United States this is now
carried out under the name NEXRAD [Lilly 1990]. It appears that soundings from satellites at this
moment are so inaccurate that they hardly contribute to the quality of the weather forecast [Smith
1991]. This situation will probably improve in ten years or so with the advent of the next gencration of
satellites.

Due to limits on computer-power, a numerical meso-scale weather prediction model will necessarily
cover a limited area. Thus, lateral boundary conditions are required. These boundary conditions can be
obtained from the output of a numerical model with a lower resolution covering a larger area (e.g., the
whole globe). An example of an operational meso-scale limited arca model is described by Golding
[1990]. This non-hydrostatic model, based on the model developed by Tapp and Whitc [1976], has a
horizontal grid distance of 15 km and 16 levels in the vertical between 10m and 12010 m. It covers an
area of 1400 by 1400 km. Of course, a whole spectrum of models exists. For example, the global
hydrostatic models used for medium range (2 to 10 day) weather forecasting have a resolution
corresponding to a finite difference grid of about 100 km with about 20 levels between the earth’s
surface and the top of the atmosphere ( p = 0) [e.g., Bengtsson 1990]. Krishnamurti ct al. [1990] give an
extensive overview of existing limited area hydrostatic models (which lic in between the two models
mentioned above) and the associated numerical techniques [see also Piclke 1984]. A study performed
by Anthes et al. [1989] has shown that the lateral boundary condition is the most important factor
determining the skill of a limited area model for forecast periods up to 36 h. This also demonstrates that
large-scale motions have a major, if not dominant, cffect on the evolution of the smaller-scale (i.e.
meso-scale) motions."

The representation of the forcing function depends on our theoretical knowledge of the physical
processes responsible for the forcing. Finding a good representation of the forcing function, especially
when this forcing is operating on a relatively small scale (such as ncar the earth’s surface), is probably
the most difficult aspect of numerical modelling of meso-scale atmospheric circulations. For example,
the evolution and, therefore, the predictability of a field of stratocumulus clouds or closed convection
cells depends strongly on the long-wave radiative cooling at cloud top and the short-wave radiative
warming of the cloud by absorption [Driedonks and Duynkerke 1989]. Squall lines or intense
thunderstorms, on the other hand, are forced very strongly by the large-scale flow and also by the
terrain (see section 6.4). For the simulation and prediction of the formation of a polar low, tropical
cyclone or small-scale intense mid-latitude cyclone [c.g., Shutts 1990] the representation of the forcing
due to latent heat release, which may also operate on a very small scale (smaller than the distance
between grid points in the model), is of crucial importance. However, we need not be too pessimistic:
the study by Anthes et al. [1989] has shown that relatively simple model parameterizations of the
forcing produce nearly the same forecast skill as the more complex schemes.

7.2, Final remarks

Clearly this review is not exhaustive as far as the many individual meso-scale weather systems are
concerned. Meso-scale weather phenomena such as thermally driven mountain and valley winds [e.g.,
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Blumen 1990, along-shore surges |e.g., Mass and Albright 1987, Dorman 1988], orographic blocking
and channelling of a cold front |c.g., Hoinka and Heimann 1988, coastal fronts and coastal lows [e.g.,
Pike 1989, van den Berg 1987, @kland 1990, Reason and Jury 1990], drylines [e.g., Weston 1972,
Schacfer 1986] and lec-side lows [c.g.. Smith 1982] (sec also fig. 6.9a) have received little or no
atiention,

As an alternative approach, we have not taken the weather phenomena themselves, but the
dynamical processes which are common to these weather phenomena as the guide to the review.
Examples of such dynamical processes are hydrostatic instability, conditional static instability, adjust-
ment to hydrostatic balance, adjustment to thermal wind balance, dynamical instability and baroclinic
instability. A theoretical examination of these processes, in which we decided to neglect the earth’s
curvature (the S-cffect), provided us with several characteristic non-dimensional parameters, charac-
teristic frequencies and wavelengths which govern the behaviour of a wide variety of circulations which
come under the meso-scale. The limiting wavelengths are the depth of the flow, at the small-scale end,
and the Rossby radius of deformation at the large-scale end. The limiting frequencies are the
Brunt-Viisili frequency at the high-frequency side and the Coriolis parameter at the low-frequency
side. A rich varicty of dynamical processes fall within these limiting time and length scales. The specific
meso-scale weather phenomena have served as illustrations of these processes.

An important distinction has been made between balanced and unbalanced meso-scale circulations
(sce sections 5.4 and 5.5). An example of a balanced system is a tropical cyclonc. An cxample of an
unbalanced system is a thunderstorm. The meso-scale, in fact, represents the transition between the
unbalanced regime and the balanced regime. Whether the atmosphere produces balanced or unbal-
anced systems depends on the nature (time scale and length scale) of the forcing. The concept of forcing
is thus a central topic of this review.

In summary, not the weather phenomena themselves, but the dynamical processes common to ail
meso-scale weather events are the key to this review. Discussions of specific meso-scale weather systems
are woven into the review as illustrations of these dynamical processes. 1 hope that this approach will
give the reader a better understanding of the concept of meso-scale as well as of the similarities and
differences between specific meso-scale weather phenomena.
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